云原生中的数据科学KubeConAsia2018FinalOutputs Distributing Workloads 2. Reproducibility Data Versioning Reproducibility For Developers Reproducibility For Developers For the Team Reproducibility For Developers For the Team For Production Back Models 3. Clarity / Organizational Trust 4. Automation (CI/CD) Summary 1. Autonomy 2. Reproducibility 3. Data Provenance 4. Automation Demo Demo Demo Demo Demo Contact Me Twitter: @samkreter0 码力 | 47 页 | 14.91 MB | 1 年前3
Jib Kubecon 2018 TalkWorks github.com/GoogleContainerTools/jib Pure Java Speed What benefits do we get from Jib Reproducibility github.com/GoogleContainerTools/jib Pure Java github.com/GoogleContainerTools/jib A container Docker github.com/GoogleContainerTools/jib Jib vs Docker github.com/GoogleContainerTools/jib Reproducibility github.com/GoogleContainerTools/jib Why reproducible ? Version Control Reduce variation0 码力 | 90 页 | 2.84 MB | 1 年前3
用户界面State of the UI_ Leveraging Kubernetes Dashboard and Shaping its FutureIn-Terminal workflows ● Frequently-repeated tasks ● Scripting & automation ● Sharing workflows / reproducibility ● Customization Onboarding new K8s users https://unsplash.com/ Over 50% of survey takers0 码力 | 41 页 | 5.09 MB | 1 年前3
Istio audit report - ADA Logics - 2023-01-30 - v1.0build service… MUST prevent network access while running the build steps.” With regards to reproducibility of builds, Ada Logics did not find evidence of any declaration of whether the build script is0 码力 | 55 页 | 703.94 KB | 1 年前3
Keras: 基于 Python 的深度学习库https://stackoverflow.com/questions/42022950/which-seeds-have-to-be-set-where-to-realize-100-reproducibility-of-training-res session_conf = tf.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)0 码力 | 257 页 | 1.19 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.1.1axis=None) Return a random sample of items from an axis of object. You can use random_state for reproducibility. Parameters n [int, optional] Number of items from axis to return. Cannot be used with frac random elements from the Series df['num_legs']: Note that we use random_state to ensure the reproducibility of the examples. >>> df['num_legs'].sample(n=3, random_state=1) fish 0 spider 8 falcon 2 axis=None) Return a random sample of items from an axis of object. You can use random_state for reproducibility. Parameters n [int, optional] Number of items from axis to return. Cannot be used with frac0 码力 | 3231 页 | 10.87 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.1.0axis=None) Return a random sample of items from an axis of object. You can use random_state for reproducibility. Parameters n [int, optional] Number of items from axis to return. Cannot be used with frac random elements from the Series df['num_legs']: Note that we use random_state to ensure the reproducibility of the examples. >>> df['num_legs'].sample(n=3, random_state=1) fish 0 spider 8 falcon 2 axis=None) Return a random sample of items from an axis of object. You can use random_state for reproducibility. Parameters n [int, optional] Number of items from axis to return. Cannot be used with frac0 码力 | 3229 页 | 10.87 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.24.0axis=None) Return a random sample of items from an axis of object. You can use random_state for reproducibility. Parameters n [int, optional] Number of items from axis to return. Cannot be used with frac random elements from the Series df['num_legs']: Note that we use random_state to ensure the reproducibility of the examples. >>> df['num_legs'].sample(n=3, random_state=1) fish 0 spider 8 falcon 2 axis=None) Return a random sample of items from an axis of object. You can use random_state for reproducibility. Parameters n [int, optional] Number of items from axis to return. Cannot be used with frac0 码力 | 2973 页 | 9.90 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.2.3axis=None) Return a random sample of items from an axis of object. You can use random_state for reproducibility. Parameters n [int, optional] Number of items from axis to return. Cannot be used with frac random elements from the Series df['num_legs']: Note that we use random_state to ensure the reproducibility of the examples. >>> df['num_legs'].sample(n=3, random_state=1) fish 0 spider 8 falcon 2 axis=None) Return a random sample of items from an axis of object. You can use random_state for reproducibility. Parameters n [int, optional] Number of items from axis to return. Cannot be used with frac0 码力 | 3323 页 | 12.74 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.3.2ignore_index=False) Return a random sample of items from an axis of object. You can use random_state for reproducibility. Parameters n [int, optional] Number of items from axis to return. Cannot be used with frac random elements from the Series df['num_legs']: Note that we use random_state to ensure the reproducibility of the examples. >>> df['num_legs'].sample(n=3, random_state=1) fish 0 spider 8 falcon 2 ignore_index=False) Return a random sample of items from an axis of object. You can use random_state for reproducibility. Parameters n [int, optional] Number of items from axis to return. Cannot be used with frac0 码力 | 3509 页 | 14.01 MB | 1 年前3
共 22 条
- 1
- 2
- 3













