积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(46)Pandas(32)机器学习(9)dapr(2)Kubernetes(1)Hadoop(1)Apache Flink(1)

语言

全部英语(41)中文(简体)(4)中文(繁体)(1)

格式

全部PDF文档 PDF(46)
 
本次搜索耗时 0.016 秒,为您找到相关结果约 46 个.
  • 全部
  • 云计算&大数据
  • Pandas
  • 机器学习
  • dapr
  • Kubernetes
  • Hadoop
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 The Future of Cloud Native Applications with Open Application Model (OAM) and Dapr

    concepts without having to stitch together individual container primitives Flexible application modeling supports a wide range of application architectures Small and simple applications are easy, large platform-agnostic application definition for any platform in any environment Consistent application modeling for small devices, Kubernetes on-premises or cloud, and fully- managed cloud environments Extendable business value, not on container primitives and plumbing CRDs combine high-level application modeling with familiar Kubernetes concepts Infra operators continue to use familiar Kubernetes infrastructure
    0 码力 | 51 页 | 2.00 MB | 1 年前
    3
  • pdf文档 OAM, Dapr and Rudr: The future of cloud native applications

    concepts without having to stitch together individual container primitives Flexible application modeling supports a wide range of application architectures Small and simple applications are easy, large platform-agnostic application definition for any platform in any environment. Consistent application modeling for small devices, Kubernetes on prem or cloud, and fully-managed cloud environments. Extendable on business value, not on container primitives and plumbing CRDs combine high-level application modeling with familiar Kubernetes concepts Infra operators continue to use familiar Kubernetes infrastructure
    0 码力 | 59 页 | 1.65 MB | 1 年前
    3
  • pdf文档 Lecture Notes on Gaussian Discriminant Analysis, Naive

    which one is better? GDA makes stronger modeling assumptions, and is more data efficient (i.e., requires less training data to learn “well”) when the modeling assumptions are correct or at least approximately approximately correct, while LR makes weaker assumptions, and is significantly more robust deviations from modeling assumptions. Hence, when the data is indeed non-Gaussian, then in the limit of large datasets, logistic
    0 码力 | 19 页 | 238.80 KB | 1 年前
    3
  • pdf文档 Lecture 5: Gaussian Discriminant Analysis, Naive Bayes

    Which one is better? GDA makes stronger modeling assumptions, and is more data efficient (i.e., requires less training data to learn “well”) when the modeling as- sumptions are correct or at least approximately correct Logistic regression makes weaker assumptions, and is significantly more robust deviations from modeling assumptions When the data is indeed non-Gaussian, then in the limit of large datasets, logistic
    0 码力 | 122 页 | 1.35 MB | 1 年前
    3
  • pdf文档 Model and Operate Datacenter by Kubernetes at eBay (提交版)

    config •Network Kubernetes •Core components •Addon •Taint Operations Our thinking of datacenter modeling by extending Kubernetes Onboard Provision Configuration Kubernetes You need onboard something
    0 码力 | 25 页 | 3.60 MB | 1 年前
    3
  • pdf文档 13. 杨赛赛-基于深度学习的多维时间序列预测在数据机房中的应用

    捕捉时间维度上的短期依赖和维度之间的空间依赖关系 ⚫ Recurrent and Recurrent-skip layer 捕捉长期宏观依赖和周期性信息 ⚫ Autoregresssive 叠加线性比例关系 Modeling Long- and Short-Term Temporal Patterns with Deep Neural Networks Guokun Lai, Wei-Cheng Chang
    0 码力 | 17 页 | 2.49 MB | 1 年前
    3
  • pdf文档 Machine Learning Pytorch Tutorial

    using PyTorch ○ Huggingface Transformers (transformer models: BERT, GPT, ...) ○ Fairseq (sequence modeling for NLP & speech) ○ ESPnet (speech recognition, translation, synthesis, ...) ○ Most implementations
    0 码力 | 48 页 | 584.86 KB | 1 年前
    3
  • pdf文档 Graph streaming algorithms - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    vkalavri@bu.edu Spring 2020 4/28: Graph Streaming ??? Vasiliki Kalavri | Boston University 2020 Modeling the world as a graph 2 Social networks friend follows The web Actor-movie networks London
    0 码力 | 72 页 | 7.77 MB | 1 年前
    3
  • pdf文档 這些年,我們一起追的Hadoop

    74 我們對 Hadoop 的期許: Batch Job Interactive Query Real-Time Processing Graph Processing Iterative Modeling 人心不足蛇吞象 Hadoop 的體質 (Batch Processing) 問題: 每次就是一個 Batch Job,一個接著一個 每個 Batch Job 做的事就是讀入所有資料、處理、寫出結果
    0 码力 | 74 页 | 45.76 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-13深度学习-Transformer

    heads(12-16个)。这超过了 Transformer论文中的参考配置参数(6个编码器层 ,512个隐藏层单元,和8个注意头) 53 如何训练BERT 方法1:MLM(Masked Language Modeling) 当前词出现不只是单单依靠上文或者下文,其 实应该是同时依赖于上下文深层的双向RNN会 互相透露信息。 句子中有15%的词汇被随机mask掉 交给模型 去预测被mask的部分到底是什么
    0 码力 | 60 页 | 3.51 MB | 1 年前
    3
共 46 条
  • 1
  • 2
  • 3
  • 4
  • 5
前往
页
相关搜索词
TheFutureofCloudNativeApplicationswithOpenApplicationModelOAMandDaprRudrfuturecloudnativeapplicationsLectureNotesonGaussianDiscriminantAnalysisNaiveBayesOperateDatacenterbyKubernetesateBay提交13杨赛赛基于深度学习多维时间序列预测数据数据机房中应用MachineLearningPytorchTutorialGraphstreamingalgorithmsCS591K1DataStreamProcessingAnalyticsSpring2020這些我們一起Hadoop机器课程温州大学Transformer
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩