《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning TechniquesDistillation are widely different learning techniques. While data augmentation is concerned with samples and labels, distillation transfers knowledge from a large model or ensemble of models to smaller models. The looking at each example and assigning them a label that they believe describes it best. The assigned labels are subjective to the perception of their labelers. For example, a human labeler might perceive the that can potentially confuse the human labelers to choose a 1 or a 7 as the target label. Obtaining labels in many cases requires significant human involvement, and for that reason can be expensive and slow0 码力 | 56 页 | 18.93 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.7.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.6 Reindexing and altering labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.7 Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7.2 Advanced indexing with labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.3 Index objects series data. • Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels • Any other form of observational / statistical data sets. The data actually need not be labeled0 码力 | 281 页 | 1.45 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.7.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.6 Reindexing and altering labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.7 Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7.2 Advanced indexing with labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.3 Index objects series data. • Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels • Any other form of observational / statistical data sets. The data actually need not be labeled0 码力 | 283 页 | 1.45 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.14.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 ii 9.7 Reindexing and altering labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 9.8 Iteration . . . . . . . . . . . . . . . . . . . . . . . 294 10.24 Setting index metadata (name(s), levels, labels) . . . . . . . . . . . . . . . . . . . . . . . . 311 10.25 Adding an index to an existing DataFrame series data. • Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels • Any other form of observational / statistical data sets. The data actually need not be labeled0 码力 | 1349 页 | 7.67 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.17.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352 10.7 Reindexing and altering labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358 10.8 Iteration series data. • Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels • Any other form of observational / statistical data sets. The data actually need not be labeled Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can simply ignore the labels and let Series, DataFrame, etc. automatically align the data for you in computations0 码力 | 1787 页 | 10.76 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.7.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.6 Reindexing and altering labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 i 6.7 Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 7.2 Advanced indexing with labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 7.3 Index objects series data. • Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels • Any other form of observational / statistical data sets. The data actually need not be labeled0 码力 | 297 页 | 1.92 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.13.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 9.7 Reindexing and altering labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 ii 9.8 Iteration . . . . . . . . . . . . . . . . . . . . . . 267 10.24 Setting index metadata (name(s), levels, labels) . . . . . . . . . . . . . . . . . . . . . . . . 279 10.25 Adding an index to an existing DataFrame series data. • Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels • Any other form of observational / statistical data sets. The data actually need not be labeled0 码力 | 1219 页 | 4.81 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 9.7 Reindexing and altering labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 9.8 Iteration . series data. • Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels • Any other form of observational / statistical data sets. The data actually need not be labeled Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can simply ignore the labels and let Series, DataFrame, etc. automatically align the data for you in computations0 码力 | 1579 页 | 9.15 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.15.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 9.7 Reindexing and altering labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 9.8 Iteration . series data. • Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels • Any other form of observational / statistical data sets. The data actually need not be labeled Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can simply ignore the labels and let Series, DataFrame, etc. automatically align the data for you in computations0 码力 | 1557 页 | 9.10 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 8.7 Reindexing and altering labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 8.8 Iteration . series data. • Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels • Any other form of observational / statistical data sets. The data actually need not be labeled Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can simply ignore the labels and let Series, DataFrame, etc. automatically align the data for you in computations0 码力 | 657 页 | 3.58 MB | 1 年前3
共 228 条
- 1
- 2
- 3
- 4
- 5
- 6
- 23













