积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(228)VirtualBox(85)OpenShift(48)Pandas(32)机器学习(21)Kubernetes(17)Istio(9)Apache Karaf(3)Docker(2)dapr(2)

语言

全部英语(150)中文(简体)(76)中文(繁体)(1)英语(1)

格式

全部PDF文档 PDF(224)其他文档 其他(2)DOC文档 DOC(1)PPT文档 PPT(1)
 
本次搜索耗时 0.272 秒,为您找到相关结果约 228 个.
  • 全部
  • 云计算&大数据
  • VirtualBox
  • OpenShift
  • Pandas
  • 机器学习
  • Kubernetes
  • Istio
  • Apache Karaf
  • Docker
  • dapr
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • DOC文档 DOC
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    Distillation are widely different learning techniques. While data augmentation is concerned with samples and labels, distillation transfers knowledge from a large model or ensemble of models to smaller models. The looking at each example and assigning them a label that they believe describes it best. The assigned labels are subjective to the perception of their labelers. For example, a human labeler might perceive the that can potentially confuse the human labelers to choose a 1 or a 7 as the target label. Obtaining labels in many cases requires significant human involvement, and for that reason can be expensive and slow
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.7.1

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.6 Reindexing and altering labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.7 Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7.2 Advanced indexing with labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.3 Index objects series data. • Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels • Any other form of observational / statistical data sets. The data actually need not be labeled
    0 码力 | 281 页 | 1.45 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.7.2

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.6 Reindexing and altering labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.7 Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7.2 Advanced indexing with labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.3 Index objects series data. • Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels • Any other form of observational / statistical data sets. The data actually need not be labeled
    0 码力 | 283 页 | 1.45 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.14.0

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 ii 9.7 Reindexing and altering labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 9.8 Iteration . . . . . . . . . . . . . . . . . . . . . . . 294 10.24 Setting index metadata (name(s), levels, labels) . . . . . . . . . . . . . . . . . . . . . . . . 311 10.25 Adding an index to an existing DataFrame series data. • Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels • Any other form of observational / statistical data sets. The data actually need not be labeled
    0 码力 | 1349 页 | 7.67 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.17.0

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352 10.7 Reindexing and altering labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358 10.8 Iteration series data. • Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels • Any other form of observational / statistical data sets. The data actually need not be labeled Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can simply ignore the labels and let Series, DataFrame, etc. automatically align the data for you in computations
    0 码力 | 1787 页 | 10.76 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.7.3

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.6 Reindexing and altering labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 i 6.7 Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 7.2 Advanced indexing with labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 7.3 Index objects series data. • Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels • Any other form of observational / statistical data sets. The data actually need not be labeled
    0 码力 | 297 页 | 1.92 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.13.1

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 9.7 Reindexing and altering labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 ii 9.8 Iteration . . . . . . . . . . . . . . . . . . . . . . 267 10.24 Setting index metadata (name(s), levels, labels) . . . . . . . . . . . . . . . . . . . . . . . . 279 10.25 Adding an index to an existing DataFrame series data. • Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels • Any other form of observational / statistical data sets. The data actually need not be labeled
    0 码力 | 1219 页 | 4.81 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.15

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 9.7 Reindexing and altering labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 9.8 Iteration . series data. • Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels • Any other form of observational / statistical data sets. The data actually need not be labeled Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can simply ignore the labels and let Series, DataFrame, etc. automatically align the data for you in computations
    0 码力 | 1579 页 | 9.15 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.15.1

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 9.7 Reindexing and altering labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 9.8 Iteration . series data. • Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels • Any other form of observational / statistical data sets. The data actually need not be labeled Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can simply ignore the labels and let Series, DataFrame, etc. automatically align the data for you in computations
    0 码力 | 1557 页 | 9.10 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.12

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 8.7 Reindexing and altering labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 8.8 Iteration . series data. • Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels • Any other form of observational / statistical data sets. The data actually need not be labeled Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can simply ignore the labels and let Series, DataFrame, etc. automatically align the data for you in computations
    0 码力 | 657 页 | 3.58 MB | 1 年前
    3
共 228 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 23
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterTechniquespandaspowerfulPythondataanalysistoolkit0.70.140.170.130.150.12
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩