积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(139)VirtualBox(46)Pandas(32)OpenShift(28)机器学习(10)Apache Kyuubi(5)rancher(4)Hadoop(4)Apache Karaf(3)Kubernetes(2)

语言

全部英语(97)中文(简体)(40)中文(繁体)(2)

格式

全部PDF文档 PDF(134)其他文档 其他(5)
 
本次搜索耗时 0.613 秒,为您找到相关结果约 139 个.
  • 全部
  • 云计算&大数据
  • VirtualBox
  • Pandas
  • OpenShift
  • 机器学习
  • Apache Kyuubi
  • rancher
  • Hadoop
  • Apache Karaf
  • Kubernetes
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 CIS 1.5 Benchmark - Self-Assessment Guide - Rancher v2.5

    Rancher v2.5 CIS 1.5 Benchmark - Self-Assessment Guide - Rancher v2.5 1 4 5 6 6 14 29 33 34 34 37 37 38 38 42 49 49 50 Contents CIS v1.5 Kubernetes Benchmark - Rancher v2.5 with Kubernetes Guide - Rancher v2.5 2 52 53 5.3 Network Policies and CNI 5.6 General Policies CIS 1.5 Benchmark - Self-Assessment Guide - Rancher v2.5 3 CIS v1.5 Kubernetes Benchmark - Rancher v2.5 with Kubernetes to download a PDF version of this document Overview This document is a companion to the Rancher v2.5 security hardening guide. The hardening guide provides prescriptive guidance for hardening a production
    0 码力 | 54 页 | 447.97 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    unpack them when decoding the data. Now let’s run the code for the range [-10, 10], incrementing by 2.5 each time and find the quantized values for b = 3. First, let’s create our x. # Construct the array quantize. # We slightly exceed 10.0 to include 10.0 in our range. x = np.arange(-10.0, 10.0 + 1e-6, 2.5) print(x) We do this using NumPy’s arange method, which allows us to generate a range of floating endpoint defined, along with a step value. This returns the following result. [-10. -7.5 -5. -2.5 0. 2.5 5. 7.5 10. ] Now let’s quantize x. # Quantize the entire array in one go. x_q = quantize(x
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-08机器学习-集成学习

    ෍ ??∈?2 ?? 1.5,2.5,3.5,4.5,5.5,6.5,7.5,8.5,9.5 ? ? = min ?1 ෍ ??∈?1 (?? − ?1)2 + min ?2 ෍ ??∈?2 (?? − ?2)2 ? = 1.5,?1 = 1 , ?2 = 2,3, … , 10 , ?1 = 5.56, ?2 = 7.5 s 1.5 2.5 3.5 4.5 5.5 6.5 7 5 0.07 -0.11 ?6 ? = x<2.5 -0.15 0.04 ? ?, ?3 ? =0.47 ? ?, ?4 ? =0.30 ? ?, ?5 ? =0.23 ?6 ? = ?5 ? + ?6 ? =?1 ? +…+?6 ? = ? ?, ?6 ? =0.17 x<6.5 x<4.5 8.95 x<3.5 x<2.5 5.63 6.83 6.56 5.82 (7)不断地重复(1)~(6)步骤直到达到规定的迭代次数或者收敛为止。 40 4.LightGBM 样本序号 样本的特征取值 样本的一阶导 样本的二阶导 ? 1 2 3 4 5 6 7 8 ?? 0.1 2.1 2.5 3.0 3.0 4.0 4.5 5.0 ?? 0.01 0.03 0.06 0.05 0.04 0.7 0.6 0.07 ℎ? 0.2 0.04 0.05 0.02 0.08 0.02 0.03
    0 码力 | 50 页 | 2.03 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.1.1

    Performance considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 2.5 Indexing and selecting data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rows x 12 columns] This tutorial uses air quality data about ??2 and Particulate matter less than 2.5 micrometers, made available by openaq and using the py-openaq package. The air_quality_long.csv data section on pivoting DataFrame objects. Pivot table I want the mean concentrations for ??2 and ??2.5 in each of the stations in table form In [14]: air_quality.pivot_table(values="value", index="location"
    0 码力 | 3231 页 | 10.87 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.1.0

    Performance considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 2.5 Indexing and selecting data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373450 8.0500 NaN S This tutorial uses air quality data about ??2 and Particulate matter less than 2.5 micrometers, made available by openaq and using the py-openaq package. The air_quality_long.csv data Python data analysis toolkit, Release 1.1.0 Pivot table I want the mean concentrations for ??2 and ??2.5 in each of the stations in table form In [14]: air_quality.pivot_table(values="value", index="location"
    0 码力 | 3229 页 | 10.87 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.3.3

    Performance considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405 2.5 Indexing and selecting data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rows x 12 columns] This tutorial uses air quality data about ??2 and Particulate matter less than 2.5 micrometers, made available by openaq and using the py-openaq package. The air_quality_long.csv data section on pivoting DataFrame objects. Pivot table I want the mean concentrations for ??2 and ??2.5 in each of the stations in table form In [14]: air_quality.pivot_table( ....: values="value", index="location"
    0 码力 | 3603 页 | 14.65 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.3.4

    Performance considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405 2.5 Indexing and selecting data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373450 8.0500 NaN S This tutorial uses air quality data about ??2 and Particulate matter less than 2.5 micrometers, made available by openaq and using the py-openaq package. The air_quality_long.csv data section on pivoting DataFrame objects. Pivot table I want the mean concentrations for ??2 and ??2.5 in each of the stations in table form In [14]: air_quality.pivot_table( ....: values="value", index="location"
    0 码力 | 3605 页 | 14.68 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.2.3

    Performance considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 2.5 Indexing and selecting data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rows x 12 columns] This tutorial uses air quality data about ??2 and Particulate matter less than 2.5 micrometers, made available by openaq and using the py-openaq package. The air_quality_long.csv data section on pivoting DataFrame objects. Pivot table I want the mean concentrations for ??2 and ??2.5 in each of the stations in table form In [14]: air_quality.pivot_table( ....: values="value", index="location"
    0 码力 | 3323 页 | 12.74 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.3.2

    Performance considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388 2.5 Indexing and selecting data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rows x 12 columns] This tutorial uses air quality data about ??2 and Particulate matter less than 2.5 micrometers, made available by openaq and using the py-openaq package. The air_quality_long.csv data section on pivoting DataFrame objects. Pivot table I want the mean concentrations for ??2 and ??2.5 in each of the stations in table form In [14]: air_quality.pivot_table( ....: values="value", index="location"
    0 码力 | 3509 页 | 14.01 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.0.0

    }} 142 Chapter 2. Getting started pandas: powerful Python data analysis toolkit, Release 1.0.0 2.5 Intro to data structures We’ll start with a quick, non-comprehensive overview of the fundamental data Series(np.random.randn(5)) Out[6]: 0 -1.202857 1 -1.577769 2 0.645254 (continues on next page) 2.5. Intro to data structures 143 pandas: powerful Python data analysis toolkit, Release 1.0.0 (continued section. Like a NumPy array, a pandas Series has a dtype. In [18]: s.dtype Out[18]: dtype('float64') 2.5. Intro to data structures 145 pandas: powerful Python data analysis toolkit, Release 1.0.0 This is
    0 码力 | 3015 页 | 10.78 MB | 1 年前
    3
共 139 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 14
前往
页
相关搜索词
CIS1.5BenchmarkSelfAssessmentGuideRancherv2EfficientDeepLearningBookEDLChapterCompressionTechniques机器学习课程温州大学08集成pandaspowerfulPythondataanalysistoolkit1.11.31.21.0
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩