积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(268)VirtualBox(113)Apache Kyuubi(44)Pandas(30)OpenShift(27)Kubernetes(9)机器学习(9)Istio(6)rancher(6)Apache Karaf(6)

语言

全部英语(214)中文(简体)(50)英语(3)中文(繁体)(1)

格式

全部PDF文档 PDF(245)其他文档 其他(22)PPT文档 PPT(1)
 
本次搜索耗时 0.503 秒,为您找到相关结果约 268 个.
  • 全部
  • 云计算&大数据
  • VirtualBox
  • Apache Kyuubi
  • Pandas
  • OpenShift
  • Kubernetes
  • 机器学习
  • Istio
  • rancher
  • Apache Karaf
  • 全部
  • 英语
  • 中文(简体)
  • 英语
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 AI大模型千问 qwen 中文文档

    ue" model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen1.5-7B-Chat", torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-7B-Chat") # Instead of using Qwen model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen1.5-7B-Chat", torch_dtype="auto", device_map="auto", attn_implementation="flash_attention_2", ) 为了解决下载问题,我们建议您尝试从 ModelScope 进行下载,只需将上述代码的第一行更改为以下内容: ue" model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen1.5-7B-Chat", torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-7B-Chat") # Instead of using
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 CIS Benchmark Rancher Self-Assessment Guide - v2.4

    /bin/grep etcd | /bin/grep -v grep Expected result: 'true' is equal to 'true' 2.3 Ensure that the --auto-tls argument is not set to true (Scored) Result: PASS Remediation: Edit the etcd pod specification remove the -- auto-tls parameter or set it to false. --auto-tls=false Audit: /bin/ps -ef | /bin/grep etcd | /bin/grep -v grep Expected result: '--auto-tls' is not present OR '--auto-tls' is not present etcd | /bin/grep -v grep Expected result: 'true' is equal to 'true' 2.6 Ensure that the --peer-auto-tls argument is not set to true (Scored) Result: PASS Remediation: Edit the etcd pod specification
    0 码力 | 54 页 | 447.77 KB | 1 年前
    3
  • pdf文档 CIS 1.5 Benchmark - Self-Assessment Guide - Rancher v2.5

    /bin/grep etcd | /bin/grep -v grep Expected result: 'true' is equal to 'true' 2.3 Ensure that the --auto-tls argument is not set to true (Scored) Result: PASS Remediation: Edit the etcd pod specification remove the -- auto-tls parameter or set it to false. --auto-tls=false Audit: /bin/ps -ef | /bin/grep etcd | /bin/grep -v grep Expected result: '--auto-tls' is not present OR '--auto-tls' is not present etcd | /bin/grep -v grep Expected result: 'true' is equal to 'true' 2.6 Ensure that the --peer-auto-tls argument is not set to true (Scored) Result: PASS Remediation: Edit the etcd pod specification
    0 码力 | 54 页 | 447.97 KB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.4.2

    file object opened binary mode. In most cases, it is not necessary to specify mode as Pandas will auto-detect whether the file object is opened in text or binary mode. In [127]: import io In [128]: data ptrepack. In addition, ptrepack can change compression levels after the fact. ptrepack --chunkshape=auto --propindexes --complevel=9 --complib=blosc in.h5 out.h5 Furthermore ptrepack in.h5 out.h5 will repack can be one of pyarrow, or fastparquet, or auto. If the engine is NOT specified, then the pd.options.io.parquet.engine option is checked; if this is also auto, then pyarrow is tried, and falling back to
    0 码力 | 3739 页 | 15.24 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.4.4

    file object opened binary mode. In most cases, it is not necessary to specify mode as Pandas will auto-detect whether the file object is opened in text or binary mode. In [133]: import io In [134]: data ptrepack. In addition, ptrepack can change compression levels after the fact. ptrepack --chunkshape=auto --propindexes --complevel=9 --complib=blosc in.h5 out.h5 Furthermore ptrepack in.h5 out.h5 will repack can be one of pyarrow, or fastparquet, or auto. If the engine is NOT specified, then the pd.options.io.parquet.engine option is checked; if this is also auto, then pyarrow is tried, and falling back to
    0 码力 | 3743 页 | 15.26 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.5.0rc0

    file object opened binary mode. In most cases, it is not necessary to specify mode as Pandas will auto-detect whether the file object is opened in text or binary mode. In [132]: import io In [133]: data ptrepack. In addition, ptrepack can change compression levels after the fact. ptrepack --chunkshape=auto --propindexes --complevel=9 --complib=blosc in.h5 out.h5 Furthermore ptrepack in.h5 out.h5 will repack can be one of pyarrow, or fastparquet, or auto. If the engine is NOT specified, then the pd.options.io.parquet.engine option is checked; if this is also auto, then pyarrow is tried, and falling back to
    0 码力 | 3943 页 | 15.73 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.0.0

    • Changed the default configuration value for options.matplotlib.register_converters from True to "auto" (GH18720). Now, pandas custom formatters will only be applied to plots created by pandas, through ptrepack. In addition, ptrepack can change compression levels after the fact. ptrepack --chunkshape=auto --propindexes --complevel=9 --complib=blosc in.h5 out.h5 Furthermore ptrepack in.h5 out.h5 will repack can be one of pyarrow, or fastparquet, or auto. If the engine is NOT specified, then the pd.options.io.parquet.engine option is checked; if this is also auto, then pyarrow is tried, and falling back to
    0 码力 | 3015 页 | 10.78 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.3.2

    file object opened binary mode. In most cases, it is not necessary to specify mode as Pandas will auto-detect whether the file object is opened in text or binary mode. In [123]: import io In [124]: data ptrepack. In addition, ptrepack can change compression levels after the fact. ptrepack --chunkshape=auto --propindexes --complevel=9 --complib=blosc in.h5 out.h5 Furthermore ptrepack in.h5 out.h5 will repack can be one of pyarrow, or fastparquet, or auto. If the engine is NOT specified, then the pd.options.io.parquet.engine option is checked; if this is also auto, then pyarrow is tried, and falling back to
    0 码力 | 3509 页 | 14.01 MB | 1 年前
    3
  • pdf文档 Apache Karaf 3.0.5 Guides

    supports tab completion so if your start typing a command it will show possible completions and also auto complete if there is only one completion. DEPLOY A SAMPLE APPLICATION While you will learn in the message -s, --start-type Mode in which the service is installed. AUTO_START or DEMAND_START (Default: AUTO_START) (defaults to AUTO_START) -n, --name The service name that will be used when installing OPTIONS -s, --start-type Mode in which the service is installed. AUTO_START or DEMAND_START (Default: AUTO_START) (defaults to AUTO_START) --help Display this help message -n, --name The service
    0 码力 | 203 页 | 534.36 KB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 54. AutoEncoder自编码器

    Auto-Encoders 主讲:龙良曲 Outline Supervised Learning https://towardsdatascience.com/supervised-vs-unsupervised-learning-14f68e32ea8d Massive Unlabeled data Unsupervised Learning https://medium.com/ tensorflow.org/ ▪ Taking advantages of unsupervised data ▪ Compression, denoising, super-resolution … Auto-Encoders https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders- 1c083af4d798 com/a-wizards-guide-to-adversarial-autoencoders-part-1- autoencoder-d9a5f8795af4 How to Train? PCA V.S. Auto-Encoders ▪ PCA, which finds the directions of maximal variance in high- dimensional data, select
    0 码力 | 29 页 | 3.49 MB | 1 年前
    3
共 268 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 27
前往
页
相关搜索词
AI模型千问qwen中文文档CISBenchmarkRancherSelfAssessmentGuidev21.5pandaspowerfulPythondataanalysistoolkit1.40rc01.01.3ApacheKaraf3.0Guides深度学习PyTorch入门实战54AutoEncoder编码码器编码器
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩