Chatbots 中对话式交互系统的分析与应用
对话交互的价值:在哪儿/在那儿 • 行业早期,价值待验证 • “能帮我把转化率提升50%吗?” • 需求界定师:砍掉不合实际的需求 • “能不能把我的销售、客服全换成机器人?” • “能不能通过分析上课视频,来解答学生的问题?” • 对话设计师:怎么更优雅地达到目的 • “公交车上你会给老人让座吗?” • 做能做且有价值的事,努力把不能做的事变成可做的 Thanks 爱因互动,欢迎你的加入0 码力 | 39 页 | 2.24 MB | 1 年前3Flink如何实时分析Iceberg数据湖的CDC数据
Flink如何实时分析Iceberg数据湖的CDC数据 阿里巴巴 李/松/胡争 23选择 Flink Ic+b+1g #2 常DCCDC 分析方案 #1 如3实时写 4F取 ## 未来规划 #4 #见的CDC分析方案 #1 离线 HBase 集u分析 CDC 数a 、CDC记录实时写入HBase。高吞P + 低延迟。 2、小vSg询延迟低。 3、集u可拓展 ci评C ci评C B点 、行存o引不适O分析A务。 2、HBase集ur护成e较高。 3、通过Re12o4Server定DHF23e, ServerlB化Rs存完H用不上。 4、数a格式q定HF23e,不cF拓展到 +arquet、Avro、Orcn。 t点 A3a/21 Kudu 维护 CDC 数据p 、支持L时更新数据,时效性佳。 2、CK加速,适合OLAP分析。 方案评估 优点 、cedKudup群,a较小众。维护 O本q。 2、H HDFS / S3 / OSS 等D裂。数据c e,且KAO本不如S3 / OSS。 3、Kudud批量P描不如3ar4u1t。 4、不支持增量SF。 h点 直接D入CDC到Hi2+分析 、流程能E作 2、Hi2+存量数据不受增量数据H响。 方案评估 优点 、数据不是CR写入; 2、每次数据D致都要 MERGE 存量数据 。T+ 方GT新3R效性差。 3、不M持CR1ps+rt。0 码力 | 36 页 | 781.69 KB | 1 年前3Volcano加速金融行业大数据分析平台云原生化改造的应用实践
Volcano加速金融行业大数据分析平台 云原生化改造的应用实践 汪 洋, 华为云 Volcano 社区核心贡献者 大数据平台云原生面临的挑战 传统大数据平台云原生化改造成为必然趋势 大数据分析、人工智能等批量计算场景深度应用于金融场景 作业管理缺失 • Pod级别调度,无法感知上层应用 • 缺少作业概念、缺少完善的生命周期的管理 • 缺少任务依赖、作业依赖支持 调度策略局限 Netherlands Groups)为全球排名前列的资产管理 公司,服务遍及40多个国家,核心业务是银行、保险及资产管理等。引入云原生基础设 施,打造新一代大数据分析自助平台。 客户诉求: • 交互式服务、常驻服务、离线分析业务统一平台调度; • Job级别的调度管理,包括生命周期、依赖关系等; • 支持业界主流计算框架,如Spark、TensorFlow等; • 多用户公平分配资源,快速响应高优先级作业0 码力 | 18 页 | 1.82 MB | 1 年前3云原生安全威胁分析与能力建设白皮书(来源:中国联通研究院)
云原生安全威胁分析与 能力建设白皮书 中国联通研究院 中国联通网络安全研究院 下一代互联网宽带业务应用国家工程研究中心 2023 年 11 月 版权声明 本报告版权属于中国联合网络通信有限公司研究院,并受法 律保护。转载、摘编或利用其他方式使用本报告文字或者观点的, 应注明“来源:中国联通研究院”。违反上述声明者,本院将追 究其相关法律责任。 云原生安全威胁分析与能力建设白皮书 二、云原生关键技术威胁全景..............................................................................19 2.1 云原生安全威胁分析...................................................................................19 2.2 路径 1:镜像攻击 拒绝服务攻击........................................................................................25 云原生安全威胁分析与能力建设白皮书 2 2.3.4 容器网络攻击..........................................................................0 码力 | 72 页 | 2.44 MB | 1 年前3机器学习课程-温州大学-特征工程
3. 特征提取 18 许永洪,吴林颖.中国各地区人口特征和房价波动的动态关系[J].统计研究,2019,36(01) 1.PCA(Principal Component Analysis,主成分分析) PCA 是降维最经典的方法,它旨在是找到数据中的主成分,并利 用这些主成分来表征原始数据,从而达到降维的目的。 PCA 的思想是通过坐标轴转换,寻找数据分布的最优子空间。 对 样本 数据进 19 许永洪,吴林颖.中国各地区人口特征和房价波动的动态关系[J].统计研究,2019,36(01) 2. ICA(Independent Component Analysis,独立成分分析) ICA独立成分分析,获得的是相互独立的属性。ICA算法本质寻找一 个线性变换 ? = ??,使得 ? 的各个特征分量之间的独立性最大。 PCA 对数据 进行降维 ICA 来从多 个维度分离 出有用数据 优点: ➢ 具有旋转、尺度、平移、视角及亮度不变性,有利于对目标 特征信息进行有效表达; ➢ SIFT 特征对参数调整鲁棒性好,可以根据场景需要调整适宜 的特征点数量进行特征描述,以便进行特征分析。 缺点:不借助硬件加速或者专门的图像处理器很难实现。 疑似特征点检测 去除伪特征点 特征点梯度 与方向匹配 特征描述向量的 生成 步骤 图像特征提取 3. 特征提取 21 许永洪0 码力 | 38 页 | 1.28 MB | 1 年前3阿里巴巴超大规模神龙裸金属 Kubernetes 集群运维实践
(广侯) 阿里巴巴 云原生应用平台 技术专家 阿里巴巴超大规模神龙裸金属 Kubernetes 集群运维实践 关注“阿里巴巴云原生”公众号 回复 1124 获取 PPT自我介绍 •嵌入式、微服务框架 •2017 年加入阿里巴巴,负责阿 里集团数十万集群节点规模化运 维管理系统的研发工作 •2019 年参与集团全面上云项目 并经历了整体架构的云原生升级 演进,稳定支撑双11峰值流量分享内容 RedeployInstance (doc) 本盘数据不能 迁移运维实践 - 宕机率分析 • 宕机关联度分析 • 宕机趋势 • 机房、单元、分组 • 机型、硬件特征 • 内核版本、hotfix 一致率 • 宕机根因分析诊断 • 硬件故障、运维事件 • vmcore 归类分析 • 内核错误日志分析Machine Operator • 全生命周期 • 导入 • 下线 • 维护 •0 码力 | 21 页 | 7.81 MB | 5 月前3VMware Infrastructure 简介
用率统计信息的日志和报告 � 警报和事件管理 - 对潜在资源过度利用或发生任何事件的用户加以跟踪和警告。 � 任务调度程序 - 调度像 VMotion 之类的在给定时间发生的任务。 � 整合 - 分析数据中心物理资源的容量和利用率。通过发现可转换为虚拟机并整合到 ESX Server 的物理系统,为提高利用率提供建议。自动化整合过程,但也要允许 用户能够灵活地调整整合参数。 分布式服务是扩展 Server 3i 的主机。 VMware, Inc. 29 VMware Infrastructure 简介 第一次使用 VI Client 包括嵌入式助手,通过嵌入式助手第一次接触虚拟化概念的用户可以逐步建 立其虚拟基础架构。该嵌入式助手的格式为 VI Client GUI 中显示的内嵌内容和在线教 程。可为经验丰富的用户关闭该助手,而向没有经验的新用户介绍该系统时可重新打 开。 Web0 码力 | 42 页 | 2.41 MB | 1 年前3机器学习课程-温州大学-Scikit-learn
Scikit-learn概述 Scikit-learn是基于NumPy、 SciPy和 Matplotlib的开源Python机器学习 包,它封装了一系列数据预处理、机器学习算法、模型选择等工具,是数 据分析师首选的机器学习工具包。 自2007年发布以来,scikit-learn已经成为Python重要的机器学习库了, scikit-learn简称sklearn,支持包括分类,回归,降维和聚类四大机器学 RFECV(estimator, scoring=“r2”) 封装式(Wrap- per),结合交叉验证的递归特征消除法,自动选择最优特征个数 fs.SelectFromModel(estimator) 嵌入式(Embedded),从 模型中自动选择特征,任何具有coef_或者 feature_importances_的 基模型都可以作为estimator参数传入 14 2.Scikit-learn主要用法0 码力 | 31 页 | 1.18 MB | 1 年前3谭国富:深度学习在图像审核的应用
正常图片:不含不良内容的正常图片。 色情图片 性感图片 SACC2017 内容审核 – 图像暴恐内容识别 l 识别应用:腾讯云,微云,QQ群 Ø 对于输入的图片,系统将会通过对其内容的识别 分析给出其属于武装份子、管制刀具、枪支弹药、 人群聚集、火灾、血腥、极端主义或恐怖主义标 识的概率,通过其概率最大的类型,判断其图片 性质属于属于暴恐还是正常。 Ø 高准确率: 在内部业务上测试,准确率97%,覆 w x b 公共计算库 X86 优化 Android 优化 iOS 优化 GPU 优化 内存池 硬件设备 网络模型 • 越来越多的应用场景,云服务,Android,iOS, 闸机嵌入式 • 越来越复杂的限制条件, 内存,功耗,延迟 • 越来越多的数据量,图像从百万到千万,数据从图像到视频 • 越来越复杂的网络结构,从Resnet,ResNeXt,DenseNet,DPN,SENET0 码力 | 32 页 | 5.17 MB | 1 年前3OpenShift Container Platform 4.9 构建应用程序
deployments EOD OpenShift Container Platform 4.9 构 构建 建应 应用程序 用程序 50 2 3 数据库的 CR。 示例应用程序,指向带有嵌入式 PodSpec 的 Deployment 或任何其他类似资源。 输出会验证是否已创建 ServiceBinding CR 以将绑定数据项目到示例应用程序中。 输 输出示例 出示例 2. 验证服务绑定的请求是否成功: com OpenShift Container Platform 4.9 构 构建 建应 应用程序 用程序 56 1 2 3 指定服务资源列表。 数据库的 CR。 示例应用程序,指向带有嵌入式 PodSpec 的 Deployment 或任何其他类似资源。 输出会验证是否已创建 ServiceBinding CR 以将绑定数据项目到示例应用程序中。 输 输出示例 出示例 2. 验证服务绑定的请求是否成功: com/v1alpha1 kind: ServiceBinding 第 第 5 章 章 将 将应 应用程序 用程序连 连接到服 接到服务 务 71 1 2 指定服务资源列表。 示例应用程序,指向带有嵌入式 PodSpec 的 Deployment 或任何其他类似资源。 如上例所示,您还可以直接使用 ConfigMap 或 Secret 本身用作绑定数据源的服务资源。 5.8.1. 命名策略 命名策略仅适用于0 码力 | 184 页 | 3.36 MB | 1 年前3
共 152 条
- 1
- 2
- 3
- 4
- 5
- 6
- 16