积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(13)数据库中间件(13)

语言

全部中文(简体)(11)

格式

全部PDF文档 PDF(13)
 
本次搜索耗时 0.097 秒,为您找到相关结果约 13 个.
  • 全部
  • 数据库
  • 数据库中间件
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Apache ShardingSphere ElasticJob 中文文档 2023 年 11 月 01 日

    . . . . . . . . . . . . . . . . . . . . . 86 9.2.7 互联网教育 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 9.2.8 互联网文娱 . . . . . . . . . . . . . . . . . . . . . . . . . 2.10 通信科技 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 9.2.11 物联网 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 9.2.12 软件开发及服务 11 博客 93 iv Apache ShardingSphere ElasticJob document ElasticJob 通过弹性调度、资源管控、以及作业治理的功能,打造一个适用于互联网场景的分布式调度解 决方案,并通过开放的架构设计,提供多元化的作业生态。它的各个产品使用统一的作业 API,开发者仅 需一次开发,即可随意部署。 ElasticJob 已于 2020 年 5 月
    0 码力 | 98 页 | 1.97 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.0.0

    背景 随着通信技术的革新,全新领域的应用层出不穷,推动和颠覆整个人类社会协作模式的革新。数据存量 随着应用的探索不断增加,数据的存储和计算模式无时无刻面临着创新。 面向交易、大数据、关联分析、物联网等场景越来越细分,单一数据库再也无法适用于所有的应用场景。 与此同时,场景内部也愈加细化,相似场景使用不同数据库已成为常态。由此可见,数据库碎片化的趋 势已经不可逆转。 4.1.2 挑战 并无统一标准的数据库的访问协议和 DBA 的运维压力就会增大。数据 备份和恢复的时间成本都将随着数据量的大小而愈发不可控。一般来讲,单一数据库实例的数据的阈值 在 1TB 之内,是比较合理的范围。 在传统的关系型数据库无法满足互联网场景需要的情况下,将数据存储至原生支持分布式的 NoSQL 的尝 试越来越多。但 NoSQL 对 SQL 的不兼容性以及生态圈的不完善,使得它们在与关系型数据库的博弈中始 终无法完成致命一击,而关系型数据库的地位却依然不可撼动。 ,分布到 不同的数据库中,从而将压力分散至不同的数据库。下图展示了根据业务需要,将用户表和订单表垂直 分片到不同的数据库的方案。 垂直分片往往需要对架构和设计进行调整。通常来讲,是来不及应对互联网业务需求快速变化的;而且, 它也并无法真正的解决单点瓶颈。垂直拆分可以缓解数据量和访问量带来的问题,但无法根治。如果垂 直拆分之后,表中的数据量依然超过单节点所能承载的阈值,则需要水平分片来进一步处理。
    0 码力 | 385 页 | 4.26 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.1.1

    背景 随着通信技术的革新,全新领域的应用层出不穷,推动和颠覆整个人类社会协作模式的革新。数据存量 随着应用的探索不断增加,数据的存储和计算模式无时无刻面临着创新。 面向交易、大数据、关联分析、物联网等场景越来越细分,单一数据库再也无法适用于所有的应用场景。 与此同时,场景内部也愈加细化,相似场景使用不同数据库已成为常态。由此可见,数据库碎片化的趋 势已经不可逆转。 4.1.2 挑战 并无统一标准的数据库的访问协议和 DBA 的运维压力就会增大。数据 备份和恢复的时间成本都将随着数据量的大小而愈发不可控。一般来讲,单一数据库实例的数据的阈值 在 1TB 之内,是比较合理的范围。 在传统的关系型数据库无法满足互联网场景需要的情况下,将数据存储至原生支持分布式的 NoSQL 的尝 试越来越多。但 NoSQL 对 SQL 的不兼容性以及生态圈的不完善,使得它们在与关系型数据库的博弈中始 终无法完成致命一击,而关系型数据库的地位却依然不可撼动。 分片到不同的数据库的方案。 4.3. 数据分片 24 Apache ShardingSphere document, v5.1.1 垂直分片往往需要对架构和设计进行调整。通常来讲,是来不及应对互联网业务需求快速变化的;而且, 它也并无法真正的解决单点瓶颈。垂直拆分可以缓解数据量和访问量带来的问题,但无法根治。如果垂 直拆分之后,表中的数据量依然超过单节点所能承载的阈值,则需要水平分片来进一步处理。
    0 码力 | 409 页 | 4.47 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.1.0

    背景 随着通信技术的革新,全新领域的应用层出不穷,推动和颠覆整个人类社会协作模式的革新。数据存量 随着应用的探索不断增加,数据的存储和计算模式无时无刻面临着创新。 面向交易、大数据、关联分析、物联网等场景越来越细分,单一数据库再也无法适用于所有的应用场景。 与此同时,场景内部也愈加细化,相似场景使用不同数据库已成为常态。由此可见,数据库碎片化的趋 势已经不可逆转。 4.1.2 挑战 并无统一标准的数据库的访问协议和 DBA 的运维压力就会增大。数据 备份和恢复的时间成本都将随着数据量的大小而愈发不可控。一般来讲,单一数据库实例的数据的阈值 在 1TB 之内,是比较合理的范围。 在传统的关系型数据库无法满足互联网场景需要的情况下,将数据存储至原生支持分布式的 NoSQL 的尝 试越来越多。但 NoSQL 对 SQL 的不兼容性以及生态圈的不完善,使得它们在与关系型数据库的博弈中始 终无法完成致命一击,而关系型数据库的地位却依然不可撼动。 分片到不同的数据库的方案。 4.3. 数据分片 24 Apache ShardingSphere document, v5.1.0 垂直分片往往需要对架构和设计进行调整。通常来讲,是来不及应对互联网业务需求快速变化的;而且, 它也并无法真正的解决单点瓶颈。垂直拆分可以缓解数据量和访问量带来的问题,但无法根治。如果垂 直拆分之后,表中的数据量依然超过单节点所能承载的阈值,则需要水平分片来进一步处理。
    0 码力 | 406 页 | 4.40 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.1.2

    背景 随着通信技术的革新,全新领域的应用层出不穷,推动和颠覆整个人类社会协作模式的革新。数据存量 随着应用的探索不断增加,数据的存储和计算模式无时无刻面临着创新。 面向交易、大数据、关联分析、物联网等场景越来越细分,单一数据库再也无法适用于所有的应用场景。 与此同时,场景内部也愈加细化,相似场景使用不同数据库已成为常态。由此可见,数据库碎片化的趋 势已经不可逆转。 4.1.2 挑战 并无统一标准的数据库的访问协议和 DBA 的运维压力就会增大。数据 备份和恢复的时间成本都将随着数据量的大小而愈发不可控。一般来讲,单一数据库实例的数据的阈值 在 1TB 之内,是比较合理的范围。 在传统的关系型数据库无法满足互联网场景需要的情况下,将数据存储至原生支持分布式的 NoSQL 的尝 试越来越多。但 NoSQL 对 SQL 的不兼容性以及生态圈的不完善,使得它们在与关系型数据库的博弈中始 终无法完成致命一击,而关系型数据库的地位却依然不可撼动。 ,分布到 不同的数据库中,从而将压力分散至不同的数据库。下图展示了根据业务需要,将用户表和订单表垂直 分片到不同的数据库的方案。 垂直分片往往需要对架构和设计进行调整。通常来讲,是来不及应对互联网业务需求快速变化的;而且, 它也并无法真正的解决单点瓶颈。垂直拆分可以缓解数据量和访问量带来的问题,但无法根治。如果垂 直拆分之后,表中的数据量依然超过单节点所能承载的阈值,则需要水平分片来进一步处理。
    0 码力 | 446 页 | 4.67 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere v5.5.0 中文文档

    DBA 的运维压力就会增大。数据 备份和恢复的时间成本都将随着数据量的大小而愈发不可控。一般来讲,单一数据库实例的数据的阈值 在 1TB 之内,是比较合理的范围。 在传统的关系型数据库无法满足互联网场景需要的情况下,将数据存储至原生支持分布式的 NoSQL 的尝 试越来越多。但 NoSQL 对 SQL 的不兼容性以及生态圈的不完善,使得它们在与关系型数据库的博弈中始 终无法完成致命一击,而关系型数据库的地位却依然不可撼动。 ,分布到 不同的数据库中,从而将压力分散至不同的数据库。下图展示了根据业务需要,将用户表和订单表垂直 分片到不同的数据库的方案。 垂直分片往往需要对架构和设计进行调整。通常来讲,是来不及应对互联网业务需求快速变化的;而且, 它也并无法真正的解决单点瓶颈。垂直拆分可以缓解数据量和访问量带来的问题,但无法根治。如果垂 直拆分之后,表中的数据量依然超过单节点所能承载的阈值,则需要水平分片来进一步处理。 尽量使用本地事务,善于使用同库不同表可有效避免分布式事务带来的麻烦。在不能避免跨库事务的场 景,有些业务仍然需要保持事务的一致性。而基于 XA 的分布式事务由于在并发度高的场景中性能无法满 足需要,并未被互联网巨头大规模使用,他们大多采用最终一致性的柔性事务代替强一致事务。 8.1. 数据分片 20 Apache ShardingSphere document 8.1.3 目标 尽量透明化分库分表
    0 码力 | 557 页 | 4.61 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere(Incubating) 云架构演化

    Sharding- Sidecar Apache ShardingSphere 云原生 无中心 零侵入 互联网应用架构发展 单体式架构 分布式微服务 云原生架构 系统解耦 可用性提升 资源按需伸缩 自劢化部署&管理 互联网数据库需求发展 RDBMS NoSQL NewSQL 键值数据库 文档数据库 列族数据库 图数据库 …… 分布式数据库
    0 码力 | 37 页 | 3.00 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.0.0-alpha

    ShardingSphere 相关的概念与功能,更多使用细节请阅读用户手册。 3.1 数据分片 3.1.1 背景 传统的将数据集中存储至单一数据节点的解决方案,在性能、可用性和运维成本这三方面已经难于满足 互联网的海量数据场景。 从性能方面来说,由于关系型数据库大多采用 B+ 树类型的索引,在数据量超过阈值的情况下,索引深度 的增加也将使得磁盘访问的 IO 次数增加,进而导致查询性能的下降;同时,高并发访问请求也使得集中 DBA 的运维压力就会增大。数据 备份和恢复的时间成本都将随着数据量的大小而愈发不可控。一般来讲,单一数据库实例的数据的阈值 在 1TB 之内,是比较合理的范围。 在传统的关系型数据库无法满足互联网场景需要的情况下,将数据存储至原生支持分布式的 NoSQL 的尝 试越来越多。但 NoSQL 对 SQL 的不兼容性以及生态圈的不完善,使得它们在与关系型数据库的博弈中始 终无法完成致命一击,而关系型数据库的地位却依然不可撼动。 ,分布到 不同的数据库中,从而将压力分散至不同的数据库。下图展示了根据业务需要,将用户表和订单表垂直 分片到不同的数据库的方案。 垂直分片往往需要对架构和设计进行调整。通常来讲,是来不及应对互联网业务需求快速变化的;而且, 它也并无法真正的解决单点瓶颈。垂直拆分可以缓解数据量和访问量带来的问题,但无法根治。如果垂 直拆分之后,表中的数据量依然超过单节点所能承载的阈值,则需要水平分片来进一步处理。
    0 码力 | 301 页 | 3.44 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.2.0

    DBA 的运维压力就会增大。数据 备份和恢复的时间成本都将随着数据量的大小而愈发不可控。一般来讲,单一数据库实例的数据的阈值 在 1TB 之内,是比较合理的范围。 在传统的关系型数据库无法满足互联网场景需要的情况下,将数据存储至原生支持分布式的 NoSQL 的尝 试越来越多。但 NoSQL 对 SQL 的不兼容性以及生态圈的不完善,使得它们在与关系型数据库的博弈中始 终无法完成致命一击,而关系型数据库的地位却依然不可撼动。 ,分布到 不同的数据库中,从而将压力分散至不同的数据库。下图展示了根据业务需要,将用户表和订单表垂直 分片到不同的数据库的方案。 垂直分片往往需要对架构和设计进行调整。通常来讲,是来不及应对互联网业务需求快速变化的;而且, 它也并无法真正的解决单点瓶颈。垂直拆分可以缓解数据量和访问量带来的问题,但无法根治。如果垂 直拆分之后,表中的数据量依然超过单节点所能承载的阈值,则需要水平分片来进一步处理。 尽量使用本地事务,善于使用同库不同表可有效避免分布式事务带来的麻烦。在不能避免跨库事务的场 景,有些业务仍然需要保持事务的一致性。而基于 XA 的分布式事务由于在并发度高的场景中性能无法满 足需要,并未被互联网巨头大规模使用,他们大多采用最终一致性的柔性事务代替强一致事务。 3.1. 数据分片 16 Apache ShardingSphere document, v5.2.0 3.1.3 目标 尽
    0 码力 | 449 页 | 5.85 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.4.1

    DBA 的运维压力就会增大。数据 备份和恢复的时间成本都将随着数据量的大小而愈发不可控。一般来讲,单一数据库实例的数据的阈值 在 1TB 之内,是比较合理的范围。 在传统的关系型数据库无法满足互联网场景需要的情况下,将数据存储至原生支持分布式的 NoSQL 的尝 试越来越多。但 NoSQL 对 SQL 的不兼容性以及生态圈的不完善,使得它们在与关系型数据库的博弈中始 终无法完成致命一击,而关系型数据库的地位却依然不可撼动。 ,分布到 不同的数据库中,从而将压力分散至不同的数据库。下图展示了根据业务需要,将用户表和订单表垂直 分片到不同的数据库的方案。 垂直分片往往需要对架构和设计进行调整。通常来讲,是来不及应对互联网业务需求快速变化的;而且, 它也并无法真正的解决单点瓶颈。垂直拆分可以缓解数据量和访问量带来的问题,但无法根治。如果垂 直拆分之后,表中的数据量依然超过单节点所能承载的阈值,则需要水平分片来进一步处理。 尽量使用本地事务,善于使用同库不同表可有效避免分布式事务带来的麻烦。在不能避免跨库事务的场 景,有些业务仍然需要保持事务的一致性。而基于 XA 的分布式事务由于在并发度高的场景中性能无法满 足需要,并未被互联网巨头大规模使用,他们大多采用最终一致性的柔性事务代替强一致事务。 8.1. 数据分片 20 Apache ShardingSphere document 8.1.3 目标 尽量透明化分库分表
    0 码力 | 530 页 | 4.49 MB | 1 年前
    3
共 13 条
  • 1
  • 2
前往
页
相关搜索词
ApacheShardingSphereElasticJob中文文档202311015.05.1v5系统架构演进潘娟alpha5.25.4
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩