积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(14)数据库中间件(14)

语言

全部中文(简体)(11)

格式

全部PDF文档 PDF(14)
 
本次搜索耗时 0.113 秒,为您找到相关结果约 14 个.
  • 全部
  • 数据库
  • 数据库中间件
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Apache ShardingSphere 中文文档 5.1.0

    . . 241 遍历归并 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 排序归并 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 分组归并 . . . )、流量变形(数 据加密、数据脱敏)、流量鉴权(安全、审计、权限)、流量治理(熔断、限流)以及流量分析(服 务质量分析、可观察性)等透明化增量功能; • 可插拔:项目采用微内核 + 三层可插拔模型,使内核、功能组件以及生态对接完全能够灵活的方式 进行插拔式扩展,开发者能够像使用积木一样定制属于自己的独特系统。 ShardingSphere 已于 2020 年 4 月 16 日成为 Apache 中的重要挑战之一。他们需要知道数据需要从哪个具体的数据库的子表中获取。 另一个挑战则是,能够正确的运行在单节点数据库中的 SQL,在分片之后的数据库中并不一定能够正确 运行。例如,分表导致表名称的修改,或者分页、排序、聚合分组等操作的不正确处理。 跨库事务也是分布式的数据库集群要面对的棘手事情。合理采用分表,可以在降低单表数据量的情况下, 尽量使用本地事务,善于使用同库不同表可有效避免分布式事务带来的麻烦。在不能避免跨库事务的场
    0 码力 | 406 页 | 4.40 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.0.0-alpha

    是其中的重要挑战之一。他们需要知道数据需要从哪个具体的数据库的分表中获取。 另一个挑战则是,能够正确的运行在单节点数据库中的 SQL,在分片之后的数据库中并不一定能够正确 运行。例如,分表导致表名称的修改,或者分页、排序、聚合分组等操作的不正确处理。 跨库事务也是分布式的数据库集群要面对的棘手事情。合理采用分表,可以在降低单表数据量的情况下, 尽量使用本地事务,善于使用同库不同表可有效避免分布式事务带来的麻烦。在不能避免跨库事务的场 0-beta SQL 解析 分为词法解析和语法解析。先通过词法解析器将 SQL 拆分为一个个不可再分的单词。再使用语法解析器 对 SQL 进行理解,并最终提炼出解析上下文。解析上下文包括表、选择项、排序项、分组项、聚合函数、 分页信息、查询条件以及可能需要修改的占位符的标记。 执行器优化 合并和优化分片条件,如 OR 等。 SQL 路由 根据解析上下文匹配用户配置的分片策略,并生成路由路径。目前支持分片路由和广播路由。 最后,通过 visitor 对抽象语法树遍历构造域模型,通过域模型(SQLStatement)去提炼分片所需的 上下文,并标记有可能需要改写的位置。供分片使用的解析上下文包含查询选择项(Select Items)、表信 息(Table)、分片条件(Sharding Condition)、自增主键信息(Auto increment Primary Key)、排序信 息(Order By)、分组信息(Group
    0 码力 | 301 页 | 3.44 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.1.1

    . . 246 遍历归并 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 排序归并 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 分组归并 . . . )、流量变形(数 据加密、数据脱敏)、流量鉴权(安全、审计、权限)、流量治理(熔断、限流)以及流量分析(服 务质量分析、可观察性)等透明化增量功能; • 可插拔:项目采用微内核 + 三层可插拔模型,使内核、功能组件以及生态对接完全能够灵活的方式 进行插拔式扩展,开发者能够像使用积木一样定制属于自己的独特系统。 ShardingSphere 已于 2020 年 4 月 16 日成为 Apache 中的重要挑战之一。他们需要知道数据需要从哪个具体的数据库的子表中获取。 另一个挑战则是,能够正确的运行在单节点数据库中的 SQL,在分片之后的数据库中并不一定能够正确 运行。例如,分表导致表名称的修改,或者分页、排序、聚合分组等操作的不正确处理。 跨库事务也是分布式的数据库集群要面对的棘手事情。合理采用分表,可以在降低单表数据量的情况下, 尽量使用本地事务,善于使用同库不同表可有效避免分布式事务带来的麻烦。在不能避免跨库事务的场
    0 码力 | 409 页 | 4.47 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.1.2

    . . 257 遍历归并 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 排序归并 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 分组归并 . . . )、流量变形(数 据加密、数据脱敏)、流量鉴权(安全、审计、权限)、流量治理(熔断、限流)以及流量分析(服 务质量分析、可观察性)等透明化增量功能; • 可插拔:项目采用微内核 + 三层可插拔模型,使内核、功能组件以及生态对接完全能够灵活的方式 进行插拔式扩展,开发者能够像使用积木一样定制属于自己的独特系统。 ShardingSphere 已于 2020 年 4 月 16 日成为 Apache 中的重要挑战之一。他们需要知道数据需要从哪个具体的数据库的子表中获取。 另一个挑战则是,能够正确的运行在单节点数据库中的 SQL,在分片之后的数据库中并不一定能够正确 运行。例如,分表导致表名称的修改,或者分页、排序、聚合分组等操作的不正确处理。 跨库事务也是分布式的数据库集群要面对的棘手事情。合理采用分表,可以在降低单表数据量的情况下, 尽量使用本地事务,善于使用同库不同表可有效避免分布式事务带来的麻烦。在不能避免跨库事务的场
    0 码力 | 446 页 | 4.67 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.0.0

    . . 244 遍历归并 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 排序归并 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 分组归并 . . . )、流量变形(数 据加密、数据脱敏)、流量鉴权(安全、审计、权限)、流量治理(熔断、限流)以及流量分析(服 务质量分析、可观察性)等透明化增量功能; • 可插拔:项目采用微内核 + 三层可插拔模型,使内核、功能组件以及生态对接完全能够灵活的方式 进行插拔式扩展,开发者能够像使用积木一样定制属于自己的独特系统。 ShardingSphere 已于 2020 年 4 月 16 日成为 Apache 中的重要挑战之一。他们需要知道数据需要从哪个具体的数据库的子表中获取。 另一个挑战则是,能够正确的运行在单节点数据库中的 SQL,在分片之后的数据库中并不一定能够正确 运行。例如,分表导致表名称的修改,或者分页、排序、聚合分组等操作的不正确处理。 跨库事务也是分布式的数据库集群要面对的棘手事情。合理采用分表,可以在降低单表数据量的情况下, 尽量使用本地事务,善于使用同库不同表可有效避免分布式事务带来的麻烦。在不能避免跨库事务的场
    0 码力 | 385 页 | 4.26 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.2.0

    . . 351 遍历归并 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352 排序归并 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352 分组归并 . . . 中的重要挑战之一。他们需要知道数据需要从哪个具体的数据库的子表中获取。 另一个挑战则是,能够正确的运行在单节点数据库中的 SQL,在分片之后的数据库中并不一定能够正确 运行。例如,分表导致表名称的修改,或者分页、排序、聚合分组等操作的不正确处理。 跨库事务也是分布式的数据库集群要面对的棘手事情。合理采用分表,可以在降低单表数据量的情况下, 尽量使用本地事务,善于使用同库不同表可有效避免分布式事务带来的麻烦。在不能避免跨库事务的场 兼容全部常用的路由至单数据节点的 SQL;路由至多数据节点的 SQL 由于场景复杂,分为稳定支持、实 验性支持和不支持这三种情况。 稳定支持 全面支持 DML、DDL、DCL、TCL 和常用 DAL。支持分页、去重、排序、分组、聚合、表关联等复杂查 询。支持 PostgreSQL 和 openGauss 数据库 SCHEMA DDL 和 DML 语句。 常规查询 • SELECT 主语句 SELECT select_expr
    0 码力 | 449 页 | 5.85 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.4.1

    . . 481 遍历归并 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482 排序归并 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482 分组归并 . . . 中的重要挑战之一。他们需要知道数据需要从哪个具体的数据库的子表中获取。 另一个挑战则是,能够正确的运行在单节点数据库中的 SQL,在分片之后的数据库中并不一定能够正确 运行。例如,分表导致表名称的修改,或者分页、排序、聚合分组等操作的不正确处理。 跨库事务也是分布式的数据库集群要面对的棘手事情。合理采用分表,可以在降低单表数据量的情况下, 尽量使用本地事务,善于使用同库不同表可有效避免分布式事务带来的麻烦。在不能避免跨库事务的场 兼容全部常用的路由至单数据节点的 SQL;路由至多数据节点的 SQL 由于场景复杂,分为稳定支持、实 验性支持和不支持这三种情况。 稳定支持 全面支持 DML、DDL、DCL、TCL 和常用 DAL。支持分页、去重、排序、分组、聚合、表关联等复杂查询。 支持 PostgreSQL 和 openGauss 数据库的 schema DDL 和 DML 语句,当 SQL 中不指定 schema 时,默认 访问 public
    0 码力 | 530 页 | 4.49 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.3.2

    . . 460 遍历归并 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461 排序归并 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461 分组归并 . . . 中的重要挑战之一。他们需要知道数据需要从哪个具体的数据库的子表中获取。 另一个挑战则是,能够正确的运行在单节点数据库中的 SQL,在分片之后的数据库中并不一定能够正确 运行。例如,分表导致表名称的修改,或者分页、排序、聚合分组等操作的不正确处理。 跨库事务也是分布式的数据库集群要面对的棘手事情。合理采用分表,可以在降低单表数据量的情况下, 尽量使用本地事务,善于使用同库不同表可有效避免分布式事务带来的麻烦。在不能避免跨库事务的场 兼容全部常用的路由至单数据节点的 SQL;路由至多数据节点的 SQL 由于场景复杂,分为稳定支持、实 验性支持和不支持这三种情况。 稳定支持 全面支持 DML、DDL、DCL、TCL 和常用 DAL。支持分页、去重、排序、分组、聚合、表关联等复杂查询。 支持 PostgreSQL 和 openGauss 数据库的 schema DDL 和 DML 语句,当 SQL 中不指定 schema 时,默认 访问 public
    0 码力 | 508 页 | 4.44 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere v5.5.0 中文文档

    . . 507 遍历归并 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508 排序归并 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508 分组归并 . . . 中的重要挑战之一。他们需要知道数据需要从哪个具体的数据库的子表中获取。 另一个挑战则是,能够正确的运行在单节点数据库中的 SQL,在分片之后的数据库中并不一定能够正确 运行。例如,分表导致表名称的修改,或者分页、排序、聚合分组等操作的不正确处理。 跨库事务也是分布式的数据库集群要面对的棘手事情。合理采用分表,可以在降低单表数据量的情况下, 尽量使用本地事务,善于使用同库不同表可有效避免分布式事务带来的麻烦。在不能避免跨库事务的场 兼容全部常用的路由至单数据节点的 SQL;路由至多数据节点的 SQL 由于场景复杂,分为稳定支持、实 验性支持和不支持这三种情况。 稳定支持 全面支持 DML、DDL、DCL、TCL 和常用 DAL。支持分页、去重、排序、分组、聚合、表关联等复杂查询。 支持 PostgreSQL 和 openGauss 数据库的 schema DDL 和 DML 语句,当 SQL 中不指定 schema 时,默认 访问 public
    0 码力 | 557 页 | 4.61 MB | 1 年前
    3
  • pdf文档 传智播客 mybatis 框架课程讲义

    执行性能, 灵活度高,非常适合对关系数据模型要求不高的软件开发,例如互联网软件、企业运营类软 件等,因为这类软件需求变化频繁,一但需求变化要求成果输出迅速。但是灵活的前提是 mybatis 无法做到数据库无关性,如果需要实现支持多种数据库的软件则需要自定义多套 sql 映射文件,工作量大。 Hibernate 对象/关系映射能力强,数据库无关性好,对于关系模型要求高的软件(例如 需求固定的定制化软件)如果用 需求固定的定制化软件)如果用 hibernate 开发可以节省很多代码,提高效率。但是 Hibernate 的学习门槛高,要精通门槛更高,而且怎么设计 O/R 映射,在性能和对象模型之间如何权 衡,以及怎样用好 Hibernate 需要具有很强的经验和能力才行。 总之,按照用户的需求在有限的资源环境下只要能做出维护性、扩展性良好的软件架构 都是好架构,所以框架只有适合才是最好。 2 Dao 开发方法 使用 //如果使用${}原始符号则不用人为在参数中加% Listlist = userMapper.selectUserByName("管理员"); 再比如 order by 排序,如果将列名通过参数传入 sql,根据传的列名进行排序,应该写为: ORDER BY ${columnName} 如果使用#{}将无法实现此功能。 4.1.2 传递简单类型 参考上边的例子。 4.1.3 传递 pojo
    0 码力 | 75 页 | 1.16 MB | 1 年前
    3
共 14 条
  • 1
  • 2
前往
页
相关搜索词
ApacheShardingSphere中文文档5.15.0alpha5.25.45.3v5传智播mybatis框架课程讲义
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩