积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(17)数据库中间件(17)

语言

全部中文(简体)(13)

格式

全部PDF文档 PDF(17)
 
本次搜索耗时 0.102 秒,为您找到相关结果约 17 个.
  • 全部
  • 数据库
  • 数据库中间件
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Apache ShardingSphere 中文文档 5.0.0

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 7.4.1 处理流程详解 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 整体架构 . . . . . . . 3 路由过程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 7.5.4 影子判定流程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 DML 语句 . . . . . . . 实现动机 配置的简化与一体化是行表达式所希望解决的两个主要问题。 在繁琐的数据分片规则配置中,随着数据节点的增多,大量的重复配置使得配置本身不易被维护。通过 行表达式可以有效地简化数据节点配置工作量。 对于常见的分片算法,使用 Java 代码实现并不有助于配置的统一管理。通过行表达式书写分片算法,可 以有效地将规则配置一同存放,更加易于浏览与存储。 4.2. 数据分片 25 Apache
    0 码力 | 385 页 | 4.26 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.1.1

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 7.5.1 处理流程详解 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 整体架构 . . . . . . . 3 路由过程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 7.6.4 影子判定流程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 DML 语句 . . . . . . . 实现动机 配置的简化与一体化是行表达式所希望解决的两个主要问题。 在繁琐的数据分片规则配置中,随着数据节点的增多,大量的重复配置使得配置本身不易被维护。通过 行表达式可以有效地简化数据节点配置工作量。 对于常见的分片算法,使用 Java 代码实现并不有助于配置的统一管理。通过行表达式书写分片算法,可 以有效地将规则配置一同存放,更加易于浏览与存储。 4.3. 数据分片 30 Apache
    0 码力 | 409 页 | 4.47 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.1.0

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 7.5.1 处理流程详解 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 整体架构 . . . . . . . 3 路由过程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 7.6.4 影子判定流程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 DML 语句 . . . . . . . 实现动机 配置的简化与一体化是行表达式所希望解决的两个主要问题。 在繁琐的数据分片规则配置中,随着数据节点的增多,大量的重复配置使得配置本身不易被维护。通过 行表达式可以有效地简化数据节点配置工作量。 对于常见的分片算法,使用 Java 代码实现并不有助于配置的统一管理。通过行表达式书写分片算法,可 以有效地将规则配置一同存放,更加易于浏览与存储。 4.3. 数据分片 30 Apache
    0 码力 | 406 页 | 4.40 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.1.2

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 7.5.1 处理流程详解 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 整体架构 . . . . . . . 3 路由过程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 7.6.4 影子判定流程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280 DML 语句 . . . . . . . 实现动机 配置的简化与一体化是行表达式所希望解决的两个主要问题。 在繁琐的数据分片规则配置中,随着数据节点的增多,大量的重复配置使得配置本身不易被维护。通过 行表达式可以有效地简化数据节点配置工作量。 对于常见的分片算法,使用 Java 代码实现并不有助于配置的统一管理。通过行表达式书写分片算法,可 以有效地将规则配置一同存放,更加易于浏览与存储。 4.3. 数据分片 30 Apache
    0 码力 | 446 页 | 4.67 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.0.0-alpha

    76 3.6.5 实现原理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 处理流程详解 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 解决方案详解 . . . . . . 实现动机 配置的简化与一体化是行表达式所希望解决的两个主要问题。 在繁琐的数据分片规则配置中,随着数据节点的增多,大量的重复配置使得配置本身不易被维护。通过 行表达式可以有效地简化数据节点配置工作量。 对于常见的分片算法,使用 Java 代码实现并不有助于配置的统一管理。通过行表达式书写分片算法,可 以有效地将规则配置一同存放,更加易于浏览与存储。 语法说明 行表达式的使用非常直观,只需要在配置中使用 有序的,这就保证了对索引字段的插入的高效性。例如 MySQL 的 Innodb 存储引擎的主键。 使用雪花算法生成的主键,二进制表示形式包含 4 部分,从高位到低位分表为:1bit 符号位、41bit 时间 戳位、10bit 工作进程位以及 12bit 序列号位。 • 符号位(1bit) 预留的符号位,恒为零。 • 时间戳位(41bit) 41 位的时间戳可以容纳的毫秒数是 2 的 41 次幂,一年所使用的毫秒数是:365
    0 码力 | 301 页 | 3.44 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.2.0

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362 7.7.1 处理流程详解 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362 整体架构 . . . . . . . 见强制分片路由。 行表达式 行表达式是为了解决配置的简化与一体化这两个主要问题。在繁琐的数据分片规则配置中,随着数据节 点的增多,大量的重复配置使得配置本身不易被维护。通过行表达式可以有效地简化数据节点配置工作 量。 对于常见的分片算法,使用 Java 代码实现并不有助于配置的统一管理。通过行表达式书写分片算法,可 以有效地将规则配置一同存放,更加易于浏览与存储。 行表达式的使用非常直观,只需要在配置中使用 集群 为了提供特定服务而集合在一起的多个节点。 源端 原始数据所在的存储集群。 目标端 原始数据将要迁移的目标存储集群。 数据迁移作业 把数据从某一个存储集群复制到另一个存储集群的完整流程。 存量数据 在数据迁移作业开始前,数据节点中已有的数据。 增量数据 在数据迁移作业执行过程中,业务系统所产生的新数据。 3.7.7 使用限制 支持项 • 将外围数据迁移至 Apache
    0 码力 | 449 页 | 5.85 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere v5.5.0 中文文档

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519 12.7.1 处理流程详解 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519 整体架构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524 12.8.1 处理流程详解 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524 脱敏规则 . . . . . . . 见强制分片路由。 行表达式 行表达式是为了解决配置的简化与一体化这两个主要问题。在繁琐的数据分片规则配置中,随着数据节 点的增多,大量的重复配置使得配置本身不易被维护。通过行表达式可以有效地简化数据节点配置工作 量。 对于常见的分片算法,使用 Java 代码实现并不有助于配置的统一管理。通过行表达式书写分片算法,可 以有效地将规则配置一同存放,更加易于浏览与存储。 行表达式作为字符串由两部分组成,分别是字符串开头的对应
    0 码力 | 557 页 | 4.61 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.4.1

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493 12.7.1 处理流程详解 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493 整体架构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498 12.8.1 处理流程详解 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498 脱敏规则 . . . . . . . 见强制分片路由。 行表达式 行表达式是为了解决配置的简化与一体化这两个主要问题。在繁琐的数据分片规则配置中,随着数据节 点的增多,大量的重复配置使得配置本身不易被维护。通过行表达式可以有效地简化数据节点配置工作 量。 对于常见的分片算法,使用 Java 代码实现并不有助于配置的统一管理。通过行表达式书写分片算法,可 以有效地将规则配置一同存放,更加易于浏览与存储。 行表达式作为字符串由两部分组成,分别是字符串开头的对应
    0 码力 | 530 页 | 4.49 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.3.2

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472 12.7.1 处理流程详解 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472 整体架构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477 12.8.1 处理流程详解 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477 脱敏规则 . . . . . . . 见强制分片路由。 行表达式 行表达式是为了解决配置的简化与一体化这两个主要问题。在繁琐的数据分片规则配置中,随着数据节 点的增多,大量的重复配置使得配置本身不易被维护。通过行表达式可以有效地简化数据节点配置工作 量。 对于常见的分片算法,使用 Java 代码实现并不有助于配置的统一管理。通过行表达式书写分片算法,可 以有效地将规则配置一同存放,更加易于浏览与存储。 行表达式的使用非常直观,只需要在配置中使用
    0 码力 | 508 页 | 4.44 MB | 1 年前
    3
  • pdf文档 01 Sharding JDBC概览

    配置动态化 熔断 & 禁用 调用链路追踪 弹性伸缩 (Planning) 1.7 数据分片工作原理 ShardingSphere的3个产品的数据分片主要流程是完全一致的。 核心由 SQL解析 => 执行器优化 => SQL路由 => SQL改写 => SQL执行 => 结果归并 的流程组成。 SQL解析 分为词法解析和语法解析。 先通过词法解析器将SQL拆分为一个个不可再分的单词。再使用语
    0 码力 | 6 页 | 781.70 KB | 1 年前
    3
共 17 条
  • 1
  • 2
前往
页
相关搜索词
ApacheShardingSphere中文文档5.05.1alpha5.2v55.45.301ShardingJDBC概览
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩