Apache ShardingSphere 中文文档 5.0.0-alpha测试过程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 sysbench 测试用例分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 附录 1 . . . . . . . . . . . . NoSQL 的尝 试越来越多。但 NoSQL 对 SQL 的不兼容性以及生态圈的不完善,使得它们在与关系型数据库的博弈中始 终无法完成致命一击,而关系型数据库的地位却依然不可撼动。 数据分片指按照某个维度将存放在单一数据库中的数据分散地存放至多个数据库或表中以达到提升性能 瓶颈以及可用性的效果。数据分片的有效手段是对关系型数据库进行分库和分表。分库和分表均可以有 效的避免由数据量超过可承受阈值而 ,分库还能够用于有效的分散对数据库 单点的访问量;分表虽然无法缓解数据库压力,但却能够提供尽量将分布式事务转化为本地事务的可能, 一旦涉及到跨库的更新操作,分布式事务往往会使问题变得复杂。使用多主多从的分片方式,可以有效 的避免数据单点,从而提升数据架构的可用性。 通过分库和分表进行数据的拆分来使得各个表的数据量保持在阈值以下,以及对流量进行疏导应对高访 问量,是应对高并发和海量数据系统0 码力 | 301 页 | 3.44 MB | 1 年前3
Apache ShardingSphere v5.5.0 中文文档. . . . . 21 海量数据高并发的 OLTP 场景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 海量数据实时分析 OLAP 场景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 8.1.5 相关参考 . . . . . . . . . 通过对数据库协议、SQL 方言以及数据库存储的灵活适配,快速构建多模异构数据库上层的标准,同时 通过内置 DistSQL 为应用提供标准化的连接方式。 2.2 增强:数据库计算增强引擎 在原生数据库基础能力之上,提供分布式及流量增强方面的能力。前者可突破底层数据库在计算与存储 上的瓶颈,后者通过对流量的变形、重定向、治理、鉴权及分析能力提供更为丰富的数据应用增强能力。 2.3 可插拔:构建数据库功能生态 要包 括查询优化器、分布式事务引擎、分布式执行引擎、权限引擎和调度引擎等。 2.3.2 L2 功能层 用于提供增量能力,其所有组件均是可选的,可以包含零至多个组件。组件之间完全隔离,互无感知,多 组件可通过叠加的方式相互配合使用。主要包括数据分片、读写分离、数据加密、影子库等。用户自定义 功能可完全面向 Apache ShardingSphere 定义的顶层接口进行定制化扩展,而无需改动内核代码。0 码力 | 557 页 | 4.61 MB | 1 年前3
Apache ShardingSphere 中文文档 5.2.0. . . . . 17 海量数据高并发的 OLTP 场景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 海量数据实时分析 OLAP 场景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1.5 相关参考 . . . . . . . . . 1 介绍 Apache ShardingSphere 是一款开源的分布式数据库生态项目,由 JDBC 和 Proxy 两款产品组成。其核心 采用微内核 + 可插拔架构,通过插件开放扩展功能。它提供多源异构数据库增强平台,进而围绕其上层 构建生态。 Apache ShardingSphere 设计哲学为 Database Plus,旨在构建异构数据库上层的标准和生态。它关注如 何充分合理地利 提供基于数据全场景的迁移能力,可 应对业务数据量激增的场景。 联 邦 查询 联邦查询,是面对复杂数据环境下利用数据的有效手段之一。ShardingSphere 提供跨数据源 的复杂数据查询分析能力,简化并提升数据使用体验。 数 据 加密 数据加密,是保证数据安全的基本手段。ShardingSphere 提供一套完整的、透明化、安全的、 低改造成本的数据加密解决方案。 影 子 库0 码力 | 449 页 | 5.85 MB | 1 年前3
Apache ShardingSphere 中文文档 5.1.1的核心概念。 • 连接:通过对数据库协议、SQL 方言以及数据库存储的灵活适配,快速的连接应用与多模式的异构 数据库; • 增量:获取数据库的访问流量,并提供流量重定向(数据分片、读写分离、影子库)、流量变形(数 据加密、数据脱敏)、流量鉴权(安全、审计、权限)、流量治理(熔断、限流)以及流量分析(服 务质量分析、可观察性)等透明化增量功能; • 可插拔:项目采用微内核 + 三层可插拔模型,使内核 可插拔架构 16 Apache ShardingSphere document, v5.1.1 L2 功能层 用于提供增量能力,其所有组件均是可选的,可以包含零至多个组件。组件之间完全隔离,互无感知,多 组件可通过叠加的方式相互配合使用。主要包括数据分片、读写分离、数据库高可用、数据加密、影子库 等。用户自定义功能可完全面向 Apache ShardingSphere 定义的顶层接口进行定制化扩展,而无需改动 1.1 背景 随着通信技术的革新,全新领域的应用层出不穷,推动和颠覆整个人类社会协作模式的革新。数据存量 随着应用的探索不断增加,数据的存储和计算模式无时无刻面临着创新。 面向交易、大数据、关联分析、物联网等场景越来越细分,单一数据库再也无法适用于所有的应用场景。 与此同时,场景内部也愈加细化,相似场景使用不同数据库已成为常态。由此可见,数据库碎片化的趋 势已经不可逆转。 4.1.2 挑战0 码力 | 409 页 | 4.47 MB | 1 年前3
Apache ShardingSphere 中文文档 5.1.0的核心概念。 • 连接:通过对数据库协议、SQL 方言以及数据库存储的灵活适配,快速的连接应用与多模式的异构 数据库; • 增量:获取数据库的访问流量,并提供流量重定向(数据分片、读写分离、影子库)、流量变形(数 据加密、数据脱敏)、流量鉴权(安全、审计、权限)、流量治理(熔断、限流)以及流量分析(服 务质量分析、可观察性)等透明化增量功能; • 可插拔:项目采用微内核 + 三层可插拔模型,使内核 可插拔架构 16 Apache ShardingSphere document, v5.1.0 L2 功能层 用于提供增量能力,其所有组件均是可选的,可以包含零至多个组件。组件之间完全隔离,互无感知,多 组件可通过叠加的方式相互配合使用。主要包括数据分片、读写分离、数据库高可用、数据加密、影子库 等。用户自定义功能可完全面向 Apache ShardingSphere 定义的顶层接口进行定制化扩展,而无需改动 1.1 背景 随着通信技术的革新,全新领域的应用层出不穷,推动和颠覆整个人类社会协作模式的革新。数据存量 随着应用的探索不断增加,数据的存储和计算模式无时无刻面临着创新。 面向交易、大数据、关联分析、物联网等场景越来越细分,单一数据库再也无法适用于所有的应用场景。 与此同时,场景内部也愈加细化,相似场景使用不同数据库已成为常态。由此可见,数据库碎片化的趋 势已经不可逆转。 4.1.2 挑战0 码力 | 406 页 | 4.40 MB | 1 年前3
Apache ShardingSphere 中文文档 5.0.0Plus,旨在构建多模数据库上层的标准和生态。它关 注如何充分合理地利用数据库的计算和存储能力,而并非实现一个全新的数据库。ShardingSphere 站在 数据库的上层视角,关注他们之间的协作多于数据库自身。 连接、增量和可插拔是 Apache ShardingSphere 的核心概念。 • 连接:通过对数据库协议、SQL 方言以及数据库存储的灵活适配,快速的连接应用与多模式的异构 数据库; 数据库; • 增量:获取数据库的访问流量,并提供流量重定向(数据分片、读写分离、影子库)、流量变形(数 据加密、数据脱敏)、流量鉴权(安全、审计、权限)、流量治理(熔断、限流)以及流量分析(服 务质量分析、可观察性)等透明化增量功能; • 可插拔:项目采用微内核 + 三层可插拔模型,使内核、功能组件以及生态对接完全能够灵活的方式 进行插拔式扩展,开发者能够像使用积木一样定制属于自己的独特系统。 方式更换。主要包 括查询优化器、分布式事务引擎、分布式执行引擎、权限引擎和调度引擎等。 L2 功能层 用于提供增量能力,其所有组件均是可选的,可以包含零至多个组件。组件之间完全隔离,互无感知,多 组件可通过叠加的方式相互配合使用。主要包括数据分片、读写分离、数据库高可用、数据加密、影子库 等。用户自定义功能可完全面向 Apache ShardingSphere 定义的顶层接口进行定制化扩展,而无需改动0 码力 | 385 页 | 4.26 MB | 1 年前3
Apache ShardingSphere 中文文档 5.4.1. . . . . 21 海量数据高并发的 OLTP 场景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 海量数据实时分析 OLAP 场景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 8.1.5 相关参考 . . . . . . . . . 通过对数据库协议、SQL 方言以及数据库存储的灵活适配,快速构建多模异构数据库上层的标准,同时 通过内置 DistSQL 为应用提供标准化的连接方式。 2.2 增强:数据库计算增强引擎 在原生数据库基础能力之上,提供分布式及流量增强方面的能力。前者可突破底层数据库在计算与存储 上的瓶颈,后者通过对流量的变形、重定向、治理、鉴权及分析能力提供更为丰富的数据应用增强能力。 2.3 可插拔:构建数据库功能生态 要包 括查询优化器、分布式事务引擎、分布式执行引擎、权限引擎和调度引擎等。 2.3.2 L2 功能层 用于提供增量能力,其所有组件均是可选的,可以包含零至多个组件。组件之间完全隔离,互无感知,多 组件可通过叠加的方式相互配合使用。主要包括数据分片、读写分离、数据加密、影子库等。用户自定义 功能可完全面向 Apache ShardingSphere 定义的顶层接口进行定制化扩展,而无需改动内核代码。0 码力 | 530 页 | 4.49 MB | 1 年前3
Apache ShardingSphere 中文文档 5.3.2. . . . . 21 海量数据高并发的 OLTP 场景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 海量数据实时分析 OLAP 场景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 8.1.5 相关参考 . . . . . . . . . 通过对数据库协议、SQL 方言以及数据库存储的灵活适配,快速构建多模异构数据库上层的标准,同时 通过内置 DistSQL 为应用提供标准化的连接方式。 2.2 增强:数据库计算增强引擎 在原生数据库基础能力之上,提供分布式及流量增强方面的能力。前者可突破底层数据库在计算与存储 上的瓶颈,后者通过对流量的变形、重定向、治理、鉴权及分析能力提供更为丰富的数据应用增强能力。 2.3 可插拔:构建数据库功能生态 要包 括查询优化器、分布式事务引擎、分布式执行引擎、权限引擎和调度引擎等。 2.3.2 L2 功能层 用于提供增量能力,其所有组件均是可选的,可以包含零至多个组件。组件之间完全隔离,互无感知,多 组件可通过叠加的方式相互配合使用。主要包括数据分片、读写分离、数据加密、影子库等。用户自定义 功能可完全面向 Apache ShardingSphere 定义的顶层接口进行定制化扩展,而无需改动内核代码。0 码力 | 508 页 | 4.44 MB | 1 年前3
Apache ShardingSphere 中文文档 5.1.2的核心概念。 • 连接:通过对数据库协议、SQL 方言以及数据库存储的灵活适配,快速的连接应用与多模式的异构 数据库; • 增量:获取数据库的访问流量,并提供流量重定向(数据分片、读写分离、影子库)、流量变形(数 据加密、数据脱敏)、流量鉴权(安全、审计、权限)、流量治理(熔断、限流)以及流量分析(服 务质量分析、可观察性)等透明化增量功能; • 可插拔:项目采用微内核 + 三层可插拔模型,使内核 可插拔架构 16 Apache ShardingSphere document, v5.1.2 L2 功能层 用于提供增量能力,其所有组件均是可选的,可以包含零至多个组件。组件之间完全隔离,互无感知,多 组件可通过叠加的方式相互配合使用。主要包括数据分片、读写分离、数据库高可用、数据加密、影子库 等。用户自定义功能可完全面向 Apache ShardingSphere 定义的顶层接口进行定制化扩展,而无需改动 1.1 背景 随着通信技术的革新,全新领域的应用层出不穷,推动和颠覆整个人类社会协作模式的革新。数据存量 随着应用的探索不断增加,数据的存储和计算模式无时无刻面临着创新。 面向交易、大数据、关联分析、物联网等场景越来越细分,单一数据库再也无法适用于所有的应用场景。 与此同时,场景内部也愈加细化,相似场景使用不同数据库已成为常态。由此可见,数据库碎片化的趋 势已经不可逆转。 4.1.2 挑战0 码力 | 446 页 | 4.67 MB | 1 年前3
Apache ShardingSphere ElasticJob 中文文档 2023 年 11 月 01 日. . . . 91 10.11 运行 Cloud Scheduler 持续输出日志“Elastic job: IP:PORT has leadership”,不能正常运行 91 10.12 在多网卡的情况下无法获取到合适的 IP . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 10.13 zk 授权升级, 在滚动部署过程中出现实例假死 } 配置作业导出端口 使用 ElasticJob 过程中可能会碰到一些分布式问题,导致作业运行不稳定。 由于无法在生产环境调试,通过 dump 命令可以把作业内部相关信息导出,方便开发者调试分析; 导出命令的使用请参见运维指南。 以下示例用于展示如何通过 SnapshotService 开启用于导出命令的监听端口。 public class JobMain { public static } 配置作业导出端口 使用 ElasticJob 过程中可能会碰到一些分布式问题,导致作业运行不稳定。 由于无法在生产环境调试,通过 dump 命令可以把作业内部相关信息导出,方便开发者调试分析; 导出命令的使用请参见运维指南。 以下示例用于展示如何通过 Spring 命名空间开启用于导出命令的监听端口。0 码力 | 98 页 | 1.97 MB | 1 年前3
共 18 条
- 1
- 2













