积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(31)其它语言(31)

语言

全部英语(31)

格式

全部PDF文档 PDF(18)其他文档 其他(13)
 
本次搜索耗时 0.075 秒,为您找到相关结果约 31 个.
  • 全部
  • 后端开发
  • 其它语言
  • 全部
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • epub文档 Agda User Manual v2.6.0.1

    Agda Quick Guide to Editing, Type Checking and Compiling Agda Code Introduction Menus Writing mathematical symbols in source code Errors Compiling Agda programs Batch-mode command A List of Tutorials of strong typing and dependent types, Agda can be used as a proof assistant, allowing to prove mathematical theorems (in a constructive setting) and to run such proofs as algorithms. Dependent types Typing to work: it cannot produce something which is not a primitive root. On a more mathematical level, we can express formulas and prove them using an algorithm. For example, a function of type (n : Nat) ->
    0 码力 | 256 页 | 247.15 KB | 1 年前
    3
  • epub文档 Agda User Manual v2.6.0

    Agda Quick Guide to Editing, Type Checking and Compiling Agda Code Introduction Menus Writing mathematical symbols in source code Errors Compiling Agda programs Batch-mode command A List of Tutorials of strong typing and dependent types, Agda can be used as a proof assistant, allowing to prove mathematical theorems (in a constructive setting) and to run such proofs as algorithms. Dependent types Typing to work: it cannot produce something which is not a primitive root. On a more mathematical level, we can express formulas and prove them using an algorithm. For example, a function of type (n : Nat) ->
    0 码力 | 256 页 | 246.87 KB | 1 年前
    3
  • pdf文档 Agda User Manual v2.6.0

    of strong typing and dependent types, Agda can be used as a proof assistant, allowing to prove mathematical theorems (in a constructive setting) and to run such proofs as algorithms. 2.1.1 Dependent types to work: it cannot produce something which is not a primitive root. On a more mathematical level, we can express formulas and prove them using an algorithm. For example, a function of type (n : Nat) -> 2.2.1 Installing Emacs under Windows A precompiled version of Emacs 24.3, with the necessary mathematical fonts, is available at http://homepage.cs.uiowa. edu/~astump/agda/ . 2.3 Installation There
    0 码力 | 191 页 | 857.07 KB | 1 年前
    3
  • pdf文档 Agda User Manual v2.6.0.1

    of strong typing and dependent types, Agda can be used as a proof assistant, allowing to prove mathematical theorems (in a constructive setting) and to run such proofs as algorithms. 2.1.1 Dependent types to work: it cannot produce something which is not a primitive root. On a more mathematical level, we can express formulas and prove them using an algorithm. For example, a function of type (n : Nat) -> 2.2.1 Installing Emacs under Windows A precompiled version of Emacs 24.3, with the necessary mathematical fonts, is available at http://homepage.cs.uiowa. edu/~astump/agda/ . 2.3 Installation There
    0 码力 | 191 页 | 857.57 KB | 1 年前
    3
  • epub文档 Agda User Manual v2.6.1.3

    Agda Quick Guide to Editing, Type Checking and Compiling Agda Code Introduction Menus Writing mathematical symbols in source code Errors Compiling Agda programs Batch-mode command A List of Tutorials of strong typing and dependent types, Agda can be used as a proof assistant, allowing to prove mathematical theorems (in a constructive setting) and to run such proofs as algorithms. Dependent types Typing to work: it cannot produce something which is not a primitive root. On a more mathematical level, we can express formulas and prove them using an algorithm. For example, a function of type (n : Nat) ->
    0 码力 | 305 页 | 375.80 KB | 1 年前
    3
  • epub文档 Agda User Manual v2.6.1.2

    Agda Quick Guide to Editing, Type Checking and Compiling Agda Code Introduction Menus Writing mathematical symbols in source code Errors Compiling Agda programs Batch-mode command A List of Tutorials of strong typing and dependent types, Agda can be used as a proof assistant, allowing to prove mathematical theorems (in a constructive setting) and to run such proofs as algorithms. Dependent types Typing to work: it cannot produce something which is not a primitive root. On a more mathematical level, we can express formulas and prove them using an algorithm. For example, a function of type (n : Nat) ->
    0 码力 | 304 页 | 375.60 KB | 1 年前
    3
  • epub文档 Agda User Manual v2.6.1.1

    Agda Quick Guide to Editing, Type Checking and Compiling Agda Code Introduction Menus Writing mathematical symbols in source code Errors Compiling Agda programs Batch-mode command A List of Tutorials of strong typing and dependent types, Agda can be used as a proof assistant, allowing to prove mathematical theorems (in a constructive setting) and to run such proofs as algorithms. Dependent types Typing to work: it cannot produce something which is not a primitive root. On a more mathematical level, we can express formulas and prove them using an algorithm. For example, a function of type (n : Nat) ->
    0 码力 | 297 页 | 375.42 KB | 1 年前
    3
  • epub文档 Agda User Manual v2.6.1

    Agda Quick Guide to Editing, Type Checking and Compiling Agda Code Introduction Menus Writing mathematical symbols in source code Errors Compiling Agda programs Batch-mode command A List of Tutorials of strong typing and dependent types, Agda can be used as a proof assistant, allowing to prove mathematical theorems (in a constructive setting) and to run such proofs as algorithms. Dependent types Typing to work: it cannot produce something which is not a primitive root. On a more mathematical level, we can express formulas and prove them using an algorithm. For example, a function of type (n : Nat) ->
    0 码力 | 297 页 | 375.42 KB | 1 年前
    3
  • pdf文档 Agda User Manual v2.6.1.2

    of strong typing and dependent types, Agda can be used as a proof assistant, allowing to prove mathematical theorems (in a constructive setting) and to run such proofs as algorithms. 2.1.1 Dependent types to work: it cannot produce something which is not a primitive root. On a more mathematical level, we can express formulas and prove them using an algorithm. For example, a function of type (n : Nat) -> 2.2.1 Installing Emacs under Windows A precompiled version of Emacs 26.1, with the necessary mathematical fonts, is available at http://www.cs.uiowa.edu/ ~astump/agda. 2.3 Installation There are several
    0 码力 | 227 页 | 1.04 MB | 1 年前
    3
  • pdf文档 Agda User Manual v2.6.1

    of strong typing and dependent types, Agda can be used as a proof assistant, allowing to prove mathematical theorems (in a constructive setting) and to run such proofs as algorithms. 2.1.1 Dependent types to work: it cannot produce something which is not a primitive root. On a more mathematical level, we can express formulas and prove them using an algorithm. For example, a function of type (n : Nat) -> 2.2.1 Installing Emacs under Windows A precompiled version of Emacs 26.1, with the necessary mathematical fonts, is available at http://www.cs.uiowa.edu/ ~astump/agda. 2.3 Installation There are several
    0 码力 | 227 页 | 1.04 MB | 1 年前
    3
共 31 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
AgdaUserManualv26.06.1
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩