积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(10)人工智能(10)

语言

全部英语(5)中文(简体)(2)[zh](1)ro(1)zh(1)

格式

全部PDF文档 PDF(10)
 
本次搜索耗时 0.025 秒,为您找到相关结果约 10 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • 中文(简体)
  • [zh]
  • ro
  • zh
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    by the number of elements, regardless of the storage precision. For DeepSeek-V2, ?? is set to 4?ℎ and ?? ℎ is set to ?ℎ 2 . So, its KV cache is equal to GQA with only 2.25 groups, but its performance to-expert affinity; e? is the centroid of the ?-th routed expert in this layer; and Topk(·, ?) denotes the set comprising ? highest scores among the affinity scores calculated for the ?-th token and all routed Hyper-Parameters. We set the number of Transformer layers to 60 and the hidden dimension to 5120. All learnable parameters are randomly initialized with a standard deviation of 0.006. In MLA, we set the number of
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 普通人学AI指南

    Docker 是一个开源的容器化平台,旨在开发、部署和运行应用。它利用容器来 隔离软件,使其在不同环境中都能一致运行。Docker 提供轻量级虚拟化,能快 速部署并且易于管理应用。 Docker 的优势: 1. 快速部署:Docker 容器可以在几秒钟内启动,提高了开发和部署的效率。 2. 一致性:确保应用在开发、测试和生产环境中具有一致的运行环境。 3. 可移植性:容器可以在任何支持 Docker 的系统上运行,实现跨平台的可 移植性。 4. 易于扩展:Docker 可以方便地扩展并支持微服务架构的部署。 基本概念: 1. 容器(Container):轻量级、独立的可执行软件包,包含了运行所需的代 码、运行时、系统工具、系统库和设置。 2. 镜像(Image):用于创建容器的只读模板。一个镜像可以包含完整的操作 系统环境。 3. Dockerfile:定义镜像内容的文本文件,包含了构建镜像的所有指令。 Dockerfile 目录中运行:docker build -t . 常用命令: 1. 列出正在运行的容器:docker ps 2. 列出所有容器:docker ps -a 3. 停止一个容器:docker stop 4. 删除一个容器:docker rm 20 4.2.2 下载 docker docker 下载地址:
    0 码力 | 42 页 | 8.39 MB | 8 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    tokens and what the LLM has seen during its training. When you write a prompt, you are attempting to set up the LLM to predict the right sequence of tokens. Prompt engineering is the process of designing Engineering February 2025 12 • If you set temperature to 0, top-K and top-P become irrelevant–the most probable token becomes the next token predicted. If you set temperature extremely high (above 1–generally predicted token. • If you set top-K to 1, temperature and top-P become irrelevant. Only one token passes the top-K criteria, and that token is the next predicted token. If you set top-K extremely high,
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    where smaller models succeed or fail. In summary, the principles for choosing a model are simple: 01 Set up evals to establish a performance baseline 02 Focus on meeting your accuracy target with the best in writing instructions for an LLM agent. Convert the following help center document into a clear set of instructions, written in a numbered list. The document will be a policy followed by an LLM. Ensure prompt leaks) or reputational risks (for example, enforcing brand aligned model behavior). 
 You can set up guardrails that address risks you’ve already identified for your use case and layer 
 in additional
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    Customize and fine-tune your models 13 Get AI in the hands of experts 16 Unblock your developers 18 Set bold automation goals 21 Conclusion 22 More resources 24 2 AI in the EnterpriseA new way 
 to work your
 developers Automating the software development lifecycle can multiply 
 AI dividends. 07 Set bold 
 automation goals Most processes involve a lot of rote work, ripe for automation. Aim high solutions. BBVA, the global banking leader, has more than 125,000 employees, each with a unique set of challenges and opportunities. They decided to get AI into the hands of employees—working closely
    0 码力 | 25 页 | 9.48 MB | 6 月前
    3
  • pdf文档 Trends Artificial Intelligence

    Intelligence (AI) May 30, 2025 Mary Meeker / Jay Simons / Daegwon Chae / Alexander Krey2 Context We set out to compile foundational trends related to AI. A starting collection of several disparate datapoints Public Launch (Google = 9/98, ChatGPT = 11/22)21 In 1998, tapping emerging Internet access, Google set out to ‘organize the world’s information and make it universally accessible and useful.’ Nearly For TiVo, we use the launch of consumer sales on 3/31/99, when TiVo charged $499 for its 14-hour box set. We do not count TiVo subscription costs. We also use the iPhone 1’s 4GB entry level price of $499
    0 码力 | 340 页 | 12.14 MB | 5 月前
    3
  • pdf文档 XDNN TVM - Nov 2019

    Xilinx Cloud DPU Processor (xDNNv3) >> 3 ˃ Configurable Overlay Processor ˃ DNN Specific Instruction Set Convolution, Max Pool etc. ˃ Any Network, Any Image Size ˃ High Frequency & High Compute Efficiency Xilinx Inference Flow >> 5 MxNet CPU Layers FPGA Layers Runtime Image Model Weights Calibration Set Quantizer Compiler Tensor Graph Optimization Framework Tensor Graph to Xilinx Tensor Graph Frontend
    0 码力 | 16 页 | 3.35 MB | 6 月前
    3
  • pdf文档 Facebook -- TVM AWS Meetup Talk

    matters a lot - Heterogenous computing environment - High variety of workloads - Ever-increasing set of primitives (over 500 aten kernels) - Interpreter methods not delivering generalized performance
    0 码力 | 11 页 | 3.08 MB | 6 月前
    3
  • pdf文档 TVM@AliOS

    咏 2018.12 | 2019.6 ee 2019.10 Alios TVM Team Set up TFLite Quantized Support 1.61X MobilenetVl TFlite
    0 码力 | 27 页 | 4.86 MB | 6 月前
    3
  • pdf文档 清华大学 普通人如何抓住DeepSeek红利

    dy/dx’等关键词。” 场景2:文科生快速上手编程 加载数据集:使用datasets库加载SQuAD数据集,这个数据 集包含了大量基于2020年之前数据生成的问答对。 提取问题:从数据集中提取问题,并使用set去重。 检查问题数量:确保提取的问题数量至少为10万个。 保存问题:将问题保存到CSV文件生成的真实答案问题.csv中。 要生成10万个存在真实答案的问题,并且基于2020年之前的 数据,可以使用现有的公开问答数据集(如SQuAD
    0 码力 | 65 页 | 4.47 MB | 8 月前
    3
共 10 条
  • 1
前往
页
相关搜索词
DeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModel普通通人普通人AI指南GooglePromptEngineeringv7OpenAIpracticalguidetobuildingagentsintheEnterpriseTrendsArtificialIntelligenceXDNNTVMNov2019FacebookAWSMeetupTalkAliOS清华华大大学清华大学如何抓住红利
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩