积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(9)人工智能(9)

语言

全部英语(4)中文(简体)(2)日语(1)zh(1)中文(简体)(1)

格式

全部PDF文档 PDF(9)
 
本次搜索耗时 0.018 秒,为您找到相关结果约 9 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • 中文(简体)
  • 日语
  • zh
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Trends Artificial Intelligence

    More… Note: Chart expressed in trillions of real GDP as measured by 2011 ‘GK$’ on a logarithmic scale. GK$ (Gross Knowledge Dollars) is an informal term used to estimate the potential business value Units ~300MM+ Units ~1B+ Units / Users ~4B+ Units Tens of Billions of Units MM Units in Log Scale Technology Compounding = Numbers Behind The Momentum13 AI Technology Compounding = Numbers Behind *As of 4/25, ‘Large-Scale AI Models’ are generally defined as those with a training compute of 1023 FLOPs or greater, per Epoch AI. Source: Epoch AI (5/25) Number of New Large-Scale AI Models (Larger than
    0 码力 | 340 页 | 12.14 MB | 5 月前
    3
  • pdf文档 PAI & TVM Meetup - Shanghai 20191116

    We 。, “UN1T1a:111T1a SUMT1C(G 了引包cf =“c=1JoalB)ioat人+C XC6CT6IT6032 。 Find the HeryBrto scale according to the access indices of fragment registers Jorfintk_inner_inner=0K_inner_inner<16;++k Adamoptimizer(learning_rate=...) # Choose a 1oss Scale manager which decides how to pick the right loss scale # throughout the training process. 1oss_scale_manger = tf.contrib.mixed_precision.FixedLossScaleManager(5666) optimizer in a LossScale0ptimizer . loss_scale_optimizer = LossScaleOptimizer(opt,1oss_scale_manager) # Call minimize() on the loss scale optimizer. train_op = loss_scale_optimizer.minimize(1oss) Loss Scaling
    0 码力 | 26 页 | 5.82 MB | 6 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    In addition, the low-rank compression and fine-grained expert segmentation will impact the output scale of a layer. Therefore, in practice, we employ additional RMS Norm layers after the compressed latent decoupled shared key k? ? as it is responsible for carrying RoPE (Su et al., 2024). For YaRN, we set the scale ? to 40, ? to 1, ? to 32, and the target maximum context length to 160K. Under these settings, we preprint arXiv:2403.07974, 2024. 23 M. Joshi, E. Choi, D. Weld, and L. Zettlemoyer. TriviaQA: A large scale distantly supervised chal- lenge dataset for reading comprehension. In R. Barzilay and M.-Y. Kan,
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 TVM Meetup: Quantization

    number stands as a proxy for FP32 number (not a downcast) • Quantized tensor is represented with a scale and a zero point http://on-demand.gputechconf.com/gtc/2017/presentation/s7310-8-bit-inference-with-tensorrt Quantization • TVM stack ingests a FP32 graph and a small dataset • Finds suitable quantization scale • Produces a quantized graph • Compiling Pre-quantized models – QNN Dialect • TVM ingests a pre-quantized Tensor[(2, 5), float32]) { qnn.quantize(%input_data, out_dtype="uint8", output_zero_point=127, output_scale=0.5f) } def @main(%input_data: Tensor[(2, 5), float32]) -> Tensor[(2, 5), uint8] { %0 = divide(%input_data
    0 码力 | 19 页 | 489.50 KB | 6 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    原始文本 修正后文本 Over the past several decades, with the explosive growth of renewable energy, large-scale energy storage technologies allow intermittent renewable energy to replace traditional energy. High-performance High-performance secondary batteries are one of the most promising candidates for large-scale energy storage intermittent technologies. Since commercialization, lithium-ion batteries (LIBs)have become durability. Over the past several decades, renewable energy has seen explosive growth, and large-scale energy storage technologies have played a vital role in enabling intermittent renewable energy sources
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 TVM工具组

    已测试 op:innerproduct / conv2d / reshape / softmax / relu / pooling / lrn / dropout / batchnorm / scale / concat / prelu / sigmoid / tanh / etwise / deconvolution / slice / flatten / normalize / crop /
    0 码力 | 6 页 | 326.80 KB | 6 月前
    3
  • pdf文档 Manus AI:Agent元年开启

    4j«Å,/È]^¬ • 1⃣1⃣ ¡¹ÉÊ«Infra/Base¬5AI *+GË3ÌÍ,¬-•ßàxC•®x> • *˜5DockercKubernetes«ÎÞÆCI±¬cAuto Scale VMs|4ßàÏÐû • 1⃣2⃣ ÑÒr35š›áâÑÒ)€Ì() AI ÓÔC#+>12 !"#$%Bloomberg*&'() >$2%AgentFG?@HIJKLM ]^ º»¨
    0 码力 | 23 页 | 4.87 MB | 6 月前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    messages a month to job seekers—and 350 million visitors coming to the site every month—these increases scale up to significant business impact. But scaling up also meant using more tokens. To increase efficiency
    0 码力 | 25 页 | 9.48 MB | 6 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    conditional statements 
 (multiple if-then-else branches), and prompt templates get difficult to scale, consider dividing each logical segment across separate agents. Tool overload The issue isn’t solely
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
共 9 条
  • 1
前往
页
相关搜索词
TrendsArtificialIntelligencePAITVMMeetupShanghai20191116DeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelQuantization清华大学DeepResearch科研工具ManusAIAgent元年开启OpenAIintheEnterprisepracticalguidetobuildingagents
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩