积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(12)人工智能(12)

语言

全部英语(6)zh(2)fj(1)日语(1)ro(1)中文(简体)(1)

格式

全部PDF文档 PDF(12)
 
本次搜索耗时 0.027 秒,为您找到相关结果约 12 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • zh
  • fj
  • 日语
  • ro
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Bring Your Own Codegen to TVM

    codegen ● Template path: python/tvm/relay/op/contrib/ /extern_op.py ● Boolean functions in the template def conv2d(attrs, args): return is_float32(args) Relay operator name Operator well Return True/False for this op After Annotation op op op op data weight1 weight3 weight2 output Subgraph begin Subgraph end© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved Example: Annotate an Entire Graph After Annotation op op op op data weight1 weight3 weight2 output Subgraph begin Subgraph end class WholeGraphAnnotator(ExprMutator): def __init__(self, target):
    0 码力 | 19 页 | 504.69 KB | 5 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    works like a checklist, flagging transactions based on preset criteria. In contrast, an LLM agent functions more like a seasoned investigator, evaluating context, considering subtle patterns, and identifying components: 01 Model The LLM powering the agent’s reasoning and decision-making 02 Tools External functions or APIs the agent can use to take action 03 Instructions Explicit guidelines and guardrails defining save_results(output): db.insert({ : output, : datetime.time()}) return "File saved" search_agent = Agent( name= , instructions= tools=[WebSearchTool(),save_results], ) "output" "timestamp"
    0 码力 | 34 页 | 7.00 MB | 5 月前
    3
  • pdf文档 Trends Artificial Intelligence

    model with 70B parameters 5/24: Google introduces AI overviews to augment its search functions 9/24: Alibaba releases 100 open-source Qwen 2.5 models, with performance in line with do more... I believe long term, we will see people coupled with… the AI they use as the overall output of that person. - Roblox Co-Founder, President, CEO & Chair of Board David Baszucki @ Q1:25 Earnings Marketing Spend Effectivity ROIC Revenues Sales Productivity Customer Service Production / Output Revenue-Focused Cost-Focused ‘Traditional’ Enterprise AI Adoption = Rising Priority70 Enterprise
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 TVM@Alibaba AI Labs

    Al.Labs 阿里巴巴人工智能实验室 PowerVR support by TVM NNVM Compiler -Execution graph -Model layers functions Computation Graph Optimizations -Param TvM Tensor Operators & g, outs): bateh #Describe how to compute output by primitive 国定 Blocking
    0 码力 | 12 页 | 1.94 MB | 5 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    Writer Joey Haymaker Designer Michael Lanning Introduction 6 Prompt engineering 7 LLM output configuration 8 Output length 8 Sampling controls 9 Temperature 9 Top-K and top-P 10 Putting it all together prompting? 54 Best Practices 54 Provide examples 54 Design with simplicity 55 Be specific about the output 56 Use Instructions over Constraints 56 Control the max token length 58 Use variables in prompts prompting with classification tasks, mix up the classes 59 Adapt to model updates 60 Experiment with output formats 60 JSON Repair 61 Working with Schemas 62 Experiment together with other prompt engineers
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    We also evaluate DeepSeek-V2 Chat (SFT) and 4 … Router Input Hidden ???????????????????????? Output Hidden ???????????????????????? ′ 1 ???????????????????????? 1 2 ????????????????????????-1 ??? {[????????????????????????,???????????? ???????????? ; ???????????????????????? ????????????]} … Output Hidden ???????????????????????? … … … … … 1 … … … … apply RoPE apply RoPE Figure 2 | Illustration denote the query, key, and value of the ?-th attention head, respectively; ?? ∈ R?×?ℎ?ℎ denotes the output projection matrix. During inference, all keys and values need to be cached to accelerate inference
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 Dynamic Model in TVM

    loop, etc) ● Dynamic shapes ○ Dynamic inputs: batch size, image size, sequence length, etc. ○ Output shape of some ops are data dependent: arange, nms, etc. ○ Control flow: concatenate within a while at compilation time ● Register a shape function for operator to check the type and compute the output shape© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Gradual typing: shape at compilation time ● Register a shape function for operator to check the type and compute the output shape ● Shape function has two modes (op_attrs, input_tensors, out_ndims) -> out_shape_tensors ○
    0 码力 | 24 页 | 417.46 KB | 5 月前
    3
  • pdf文档 XDNN TVM - Nov 2019

    shape, inputs, lambda ins, outs: tvm.call_packed('tvm.accel.accel_fused', attrs['path'], attrs['output_layout'], attrs['model_name'], outs[0], *ins ), name=name) return out >> 10© Copyright 2018 Xilinx register_func("tvm.accel.accel_fused") def accel_fused(graph_path, output_layout, out, *ins ): path = c_char_p(graph_path.value).value layout = c_char_p(output_layout.value).value … >> 12© Copyright 2018 Xilinx
    0 码力 | 16 页 | 3.35 MB | 5 月前
    3
  • pdf文档 TVM Meetup: Quantization

    (%input_data: Tensor[(2, 5), float32]) { qnn.quantize(%input_data, out_dtype="uint8", output_zero_point=127, output_scale=0.5f) } def @main(%input_data: Tensor[(2, 5), float32]) -> Tensor[(2, 5), uint8]
    0 码力 | 19 页 | 489.50 KB | 5 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    commercialization, lithium-ion batteries (LIBs)have become mainstream energy storage devices with their high output voltage, high energy density, and long cycle life. In order to meet the strong demand for further have become the mainstream energy storage devices since their commercialization due to their high output voltage, high energy density, and long cycle life. Nevertheless, to meet the increasing demand for
    0 码力 | 85 页 | 8.31 MB | 7 月前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
BringYourOwnCodegentoTVMOpenAIpracticalguidebuildingagentsTrendsArtificialIntelligenceAlibabaAILabsGooglePromptEngineeringv7DeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelDynamicinXDNNNov2019MeetupQuantization清华大学DeepResearch科研
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩