积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(10)人工智能(10)

语言

全部英语(5)日语(1)kor(1)ro(1)zh(1)中文(简体)(1)

格式

全部PDF文档 PDF(10)
 
本次搜索耗时 0.018 秒,为您找到相关结果约 10 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • 日语
  • kor
  • ro
  • zh
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Trends Artificial Intelligence

    Current Users Outside North America Note: LLM data is for monthly active mobile app users. App not available in select countries, including China and Russia, as of 5/25. Source: United Nations / International the current state of AI as our space race and the people we’re discussing, especially China, are highly capable… there’s very few secrets. And there’s just progress. And you want to make sure that you’re types (e.g., text, images, audio) together. **Open-source = AI models and tools made publicly available for use, modification, and redistribution. 1) 4/25 estimate from OpenAI CEO Sam Altman’s 4/11/25
    0 码力 | 340 页 | 12.14 MB | 5 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    model combines the different sampling settings together. If temperature, top-K, and top-P are all available (as in Vertex Studio), tokens that meet both the top-K and top-P criteria are candidates for the top-P criteria. If only top-K or top-P is available, the behavior is the same but only the one top-K or P setting is used. If temperature is not available, whatever tokens meet the top-K and/or top-P phrase will, by chance, lead back to a prior state, creating a loop due to the vast number of available options. In both cases, the model's sampling process gets "stuck," resulting in monotonous and
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 Facebook -- TVM AWS Meetup Talk

    days of work - TVM sampling model running in 30us on single server CPU core - Beat hand-written, highly optimized baselines (https://github.com/mozilla/LPCNet) by ~40% - Bonus: Real-time on mobile CPUs tradeoffs - how const are parameters? - structure specialization trades off icache/ dcache - also available today in FBGEMMPyTorch and TVM - Lots of opportunity in PyTorch - Graph optimization - Existing
    0 码力 | 11 页 | 3.08 MB | 6 月前
    3
  • pdf文档 OctoML OSS 2019 11 8

    implemented as a non-copying view instead. We wantto add this form of view as a relay intrinsic to enable highly fused and optimized transformer models. olo o o QQ octoML BERT has many reshape operations, which
    0 码力 | 16 页 | 1.77 MB | 6 月前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    surprisingly, there were some questions across the business about how AI could add value to the highly personal and sensitive nature of the work. The answer was to conduct intensive evals for every
    0 码力 | 25 页 | 9.48 MB | 6 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    establish a performance baseline 02 Focus on meeting your accuracy target with the best models available 03 Optimize for cost and latency by replacing larger models with smaller ones 
 where possible You interaction. This ensures a smooth, unified user experience, with specialized capabilities always available on-demand. This pattern is ideal for workflows where you only want one agent to control workflow violence) to maintain safe, respectful interactions. Tool safeguards Assess the risk of each tool available to your agent by assigning a rating—low, medium, or high—based on factors like read-only vs. write
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • pdf文档 清华大学第二弹:DeepSeek赋能职场

    models-now-available-on- aws 671B(全量模型) 需注册AWS账户,填写付款方式,免费部署。 Cerebras https://cerebras.ai 70B 邮箱注册,速度快,宣称比GPU方案快57倍。 Groq https://groq.com/groqclou d-makes-deepseek-r1- distill-llama-70b-available 70B
    0 码力 | 35 页 | 9.78 MB | 8 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    versions still achieve top-tier performance among open-source models. The model checkpoints are available at h t t p s : / / g i t h u b . c o m / d e e p s e e k - a i / D e e p S e e k - V 2 . 0 20 40 deleted data. Moreover, we incorporate more Chinese data, aiming to better leverage the corpus available on the Chinese internet. In addition to the amount of data, we also focus on the data quality. We
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 XDNN TVM - Nov 2019

    performance limited by slowest one ˃ Performance results based on Xilinx own runtime pipeline available in github (https://github.com/Xilinx/ml-suite/blob/master/examples/deployment_modes/mp_classify
    0 码力 | 16 页 | 3.35 MB | 6 月前
    3
  • pdf文档 TVM Meetup: Quantization

    schedules using fast Integer operations like Intel VNNI, ARM Dot, Nvidia DP4A • Full pipeline is available. Please try it and give suggestions. • Open-source discussions formed the foundations of both the
    0 码力 | 19 页 | 489.50 KB | 6 月前
    3
共 10 条
  • 1
前往
页
相关搜索词
TrendsArtificialIntelligenceGooglePromptEngineeringv7FacebookTVMAWSMeetupTalkOctoMLOSS201911OpenAIAIintheEnterprisepracticalguidetobuildingagents清华华大大学清华大学第二DeepSeek赋能职场V2StrongEconomicalandEfficientMixtureofExpertsLanguageModelXDNNNovQuantization
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩