积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(9)人工智能(9)

语言

全部英语(6)[zh](1)fj(1)日语(1)

格式

全部PDF文档 PDF(9)
 
本次搜索耗时 0.021 秒,为您找到相关结果约 9 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • [zh]
  • fj
  • 日语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    (KV) cache into a latent vector, while DeepSeekMoE enables training strong models at an economical cost through sparse computation. Compared with DeepSeek 67B, DeepSeek-V2 achieves significantly stronger 7 2.1.3 Decoupled Rotary Position Embedding . . . . . . . . . . . . . . . . . . . . 8 2.1.4 Comparison of Key-Value Cache . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 DeepSeekMoE: Training D.1 Ablation of MHA, GQA, and MQA . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 D.2 Comparison Between MLA and MHA . . . . . . . . . . . . . . . . . . . . . . . . . 31 E Discussion About Pre-Training
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 Trends Artificial Intelligence

    Inference Costs Per Token Falling = Performance Converging + Developer Usage Rising • AI Usage + Cost + Loss Growth = Unprecedented • AI Monetization Threats = Rising Competition + Open-Source Momentum Rising + Inference Costs Per Token Falling = Performance Converging + Developer Usage Rising 3 Cost of Key Technologies Relative to Launch Year % of Original Price By Year (Indexed to Year 0) Note: International Federation of Robotics Industrial Robots Installed Details on Page 289 AI Usage + Cost + Loss Growth = Unprecedented 4 Leading USA-Based AI LLM Revenue vs. Compute Expense Note: Figures
    0 码力 | 340 页 | 12.14 MB | 5 月前
    3
  • pdf文档 TVM@AliOS

    77 | | | Depthwise Convolution Workload Performance Alios TVM @ ARM CPU INT8 Performance Comparison @ rasp 3b+ AARCH64 aoo0 8.87 sm ao 7m am sm 3.83 om ao 2.08 2 with LLVM to simulate GEMM microkernel /NiiOS ! 驱动万物智能 Alios TVM @ ARM CPU FP32 Performance Comparison AARCH64 12 135 117 工1 1 1.07 国
    0 码力 | 27 页 | 4.86 MB | 6 月前
    3
  • pdf文档 Bring Your Own Codegen to TVM

    return new_call© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Comparison of Two Options Op-level annotation ● Simple and easy to implement 👍 ● One op per subgraph results
    0 码力 | 19 页 | 504.69 KB | 6 月前
    3
  • pdf文档 TVM Meetup: Quantization

    Accuracy© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Performance Comparison • Metric – Latency in ms for batch size = 1 • 1.7x speedup on Inception asymmetric quantized
    0 码力 | 19 页 | 489.50 KB | 6 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    Different models have different strengths and tradeoffs related to task complexity, latency, and cost. As we’ll see in the next section on Orchestration, you might want to consider using a variety 
 of performance baseline 02 Focus on meeting your accuracy target with the best models available 03 Optimize for cost and latency by replacing larger models with smaller ones 
 where possible You can find a comprehensive
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • pdf文档 TVM@Alibaba AI Labs

    Operators Algorithm &Schedule CUDA TOPI Backends Machine Learning Automated Optimizer Schedule explorer Cost model Mali TOPI ROCM TOPI PVRTOPI Alibaba Al.Labs 阿里巴巴人工智能实验室 PVR TOPI > TOPI for PVR,including
    0 码力 | 12 页 | 1.94 MB | 6 月前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    because we set bold automation goals from the start, instead of accepting inefficient processes as a cost of doing business. 21 AI in the EnterpriseConclusion Learning from each other As the previous examples
    0 码力 | 25 页 | 9.48 MB | 6 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    includes the chain of thought reasoning, which means more output tokens, which means predictions cost more money and take longer. To explain the following example in Table 11, let’s first try to create
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
共 9 条
  • 1
前往
页
相关搜索词
DeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelTrendsArtificialIntelligenceTVMAliOSBringYourOwnCodegentoMeetupQuantizationOpenAIpracticalguidebuildingagentsAlibabaAILabsintheEnterpriseGooglePromptEngineeringv7
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩