积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(6)人工智能(6)

语言

全部英语(4)fj(1)ro(1)

格式

全部PDF文档 PDF(6)
 
本次搜索耗时 0.020 秒,为您找到相关结果约 6 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • fj
  • ro
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 OpenAI 《A practical guide to building agents》

    or generating a report. Applications that integrate LLMs but don’t use them to control workflow execution—think simple chatbots, single-turn LLMs, or sentiment classifiers—are not agents. More concretely manage workflow execution and make decisions. It recognizes when a workflow is complete and can proactively correct its actions if needed. In case 
 of failure, it can halt execution and transfer control Examples Data Enable agents to retrieve context and information necessary for executing the workflow. Query transaction databases or systems like CRMs, read PDF documents, or search the web. Action Enable
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • pdf文档 Trends Artificial Intelligence

    to computing, calculating or counting patents. Google patents data changes somewhat between each query so numbers are rounded and should be viewed as directionally accurate. Source: USA Patent & Trademark agents, but deploying them, investing in frameworks and building ecosystems around autonomous execution. What was once a messaging interface is becoming an action layer.90 Source: Google Trends via rich context within the enterprise through the Ontology. We remain differentiated in our elite execution to deliver quantified exceptionalism for our customers, ever widening their advantage over the
    0 码力 | 340 页 | 12.14 MB | 5 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    approaches have been explored to address this issue, including Grouped-Query Attention (GQA) (Ainslie et al., 2023) and Multi-Query Attention (MQA) (Shazeer, 2019). However, these methods often compromise limit the inference efficiency. In order to reduce the KV cache, Multi-Query Atten- tion (MQA) (Shazeer, 2019) and Grouped-Query Attention (GQA) (Ainslie et al., 2023) are proposed. They require a smaller respectively: q? = ??h?, (1) k? = ? ?h?, (2) v? = ??h?, (3) 6 Grouped-Query Attention (GQA) Multi-Head Attention (MHA) Multi-Query Attention (MQA) Multi-Head Latent Attention (MLA) Keys Queries Values
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 TVM@Alibaba AI Labs

    阿里巴巴人工智能实验室 PowerVR GPU Alibaba Al.Labs 阿里巴巴人工智能实验室 PowerVR support by TVM NNVM Compiler -Execution graph -Model layers functions Computation Graph Optimizations -Param TvM
    0 码力 | 12 页 | 1.94 MB | 6 月前
    3
  • pdf文档 XDNN TVM - Nov 2019

    Efficiency ˃ Supported on U200 – 3 Instances U250 – 4 Instances Amazon F1 ˃ ~1536 DSPs @ 700MHz Execution Controller Spill / Restore DMA Controller Weights DMA Controller Systolic Array Bias ReLU
    0 码力 | 16 页 | 3.35 MB | 6 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    specific aspects of the RAG system that impact what content was inserted into the prompt, including the query, chunk settings, chunk output, and other information. Once you feel the prompt is close to perfect
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
共 6 条
  • 1
前往
页
相关搜索词
OpenAIpracticalguidetobuildingagentsTrendsArtificialIntelligenceDeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelTVMAlibabaAILabsXDNNNov2019GooglePromptEngineeringv7
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩