积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(6)人工智能(6)

语言

全部英语(4)zh(1)中文(简体)(1)

格式

全部PDF文档 PDF(6)
 
本次搜索耗时 0.019 秒,为您找到相关结果约 6 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • zh
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Google 《Prompt Engineering v7》

    affect its efficacy: the model you use, the model’s training data, the model configurations, your word-choice, style and tone, structure, and context all matter. Therefore, prompt engineering is an iterative Large Language Models where the model gets stuck in a cycle, repeatedly generating the same (filler) word, phrase, or sentence structure, often exacerbated by inappropriate temperature and top-k/ Prompt the model's output becomes excessively random, increasing the probability that a randomly chosen word or phrase will, by chance, lead back to a prior state, creating a loop due to the vast number of
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 Dynamic Model in TVM

    == "NCHW": oc, ic, kh, kw = inputs[1].shape strategy.register_specialized_implement(wrap_compute_conv2d(topi.x86.conv2d_winograd), topi.x86 ment(wrap_compute_conv2d(topi.x86.conv2d_nchw), topi.x86.schedule_conv2d_nchw) elif layout == "NHWC": strategy.register_default_implement(wrap_compute_conv2d(topi topi.x86.schedule_conv2d_nhwc) elif layout == "NCHWc": strategy.register_default_implement(wrap_compute_conv2d(topi.nn.conv2d_nchwc), topi.x86.schedule_conv2d_nchwc)
    0 码力 | 24 页 | 417.46 KB | 6 月前
    3
  • pdf文档 Bring Your Own Codegen to TVM

    Services, Inc. or its Affiliates. All rights reserved. Graph Partitioning Use external functions to wrap annotated subgraphs extern function data weight1 weight3 weight2 output data weight1 weight3
    0 码力 | 19 页 | 504.69 KB | 6 月前
    3
  • pdf文档 Trends Artificial Intelligence

    burn. *Cost-per-token = The expense incurred for processing or generating a single token (a word, sub-word, or character) during the operation of a language model. It is a key metric used to evaluate Richard Hirsh 0% 25% 50% 75% 100% 0 20 40 60 80 Electric Power Computer Memory ChatGPT: 75-Word Response % of Original Price By Year (Indexed to Year 0) AI Model Compute Costs High / Rising + cent… *Cost-per-token = The expense incurred for processing or generating a single token (a word, sub-word, or character) during the operation of a language model. It is a key metric used to evaluate
    0 码力 | 340 页 | 12.14 MB | 5 月前
    3
  • pdf文档 普通人学AI指南

    一种是 web 站点,用某些网站作为知识库构建的数据来源。在这里根据我的需 求,应该选择通用型。 然后点击进入选择文件夹这里,上传我的 Python 副业代码文件,说明文档, 数据格式可以是 txt、word、pdf、ppt 等,在确定需要上传的文档后,点击图 41中右下角的“创建并导入”按钮。 Figure 41: MaxKB 界面-知识库配置续 如下图 42所示,上传这里面的文件到本地 MaxKB
    0 码力 | 42 页 | 8.39 MB | 8 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    L. Kaiser, M. Plappert, J. Tworek, J. Hilton, R. Nakano, et al. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168, 2021. Y. Cui, T. Liu, W. Che, L. Xiao, Z. Chen, W. Ma
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
共 6 条
  • 1
前往
页
相关搜索词
GooglePromptEngineeringv7DynamicModelinTVMBringYourOwnCodegentoTrendsArtificialIntelligence普通通人普通人AI指南DeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguage
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩