积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(15)人工智能(15)

语言

全部英语(7)zh(4)[zh](1)fj(1)日语(1)kor(1)

格式

全部PDF文档 PDF(15)
 
本次搜索耗时 0.018 秒,为您找到相关结果约 15 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • zh
  • [zh]
  • fj
  • 日语
  • kor
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    outperform GPT-4-0613 and ERNIEBot 4.0, solidifying the position of our models in the top-tier LLMs that support Chinese. Specifically, DeepSeek-V2 Chat (RL) shows remarkable performance in Chinese language understanding society. • Currently, DeepSeek-V2 is designed to support the text modality exclusively. In our forward-looking agenda, we intend to enable our model to support multiple modalities, enhancing its versatility 8 times as many packages as meals. If she needs to deliver 27 meals and packages combined, how many meals does she deliver? A: Let’s think step by step. Let p be the number of packages Angela delivers
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 Bring Your Own Codegen to TVM

    its Affiliates. All rights reserved. Example showcase: Intel MKL-DNN (DNNL) library 1. Import packages import numpy as np from tvm import relay 2. Load a pretrained network mod, params = relay.testing
    0 码力 | 19 页 | 504.69 KB | 5 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    for Python, together with VertexAI (google-cloud-aiplatform) and the google-search-results pip packages. Prompt Engineering February 2025 38 To run this sample you must create a (free) SerpAPI key from
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    instructions Use existing documents When creating routines, use existing operating procedures, support scripts, or policy documents to create LLM-friendly routines. In customer service for example, routines both sales and support: Python 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 from agents import Agent, Runner technical_support_agent = Agent( ] ) order_management_agent = Agent( name= , instructions=( "Technical Support Agent", "You provide expert assistance with resolving technical issues, system outages, or product
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • pdf文档 OctoML OSS 2019 11 8

    Infrastructure Improvements to TVM o_uTVM: support for microcontrollers in TVM o_ Virtual Machine and dynamic NNs support (w/ AWS folks) o_ Improved NLP support, with focus on transformers QQ octoML Core loops e Support for different integer division modes, floor division and truncating division. e Unified Object and Node system for TVM runtime o Lays groundwork forimproved multi-language support for expPosing BERT have recently become very Popular and require first class support in TVML. ee What we've done: o Extend the relay ONNX frontend to support all opset versions of BERT. 里This enables importing of native
    0 码力 | 16 页 | 1.77 MB | 5 月前
    3
  • pdf文档 Trends Artificial Intelligence

    starting to emerge. AI agents could reshape how users interact with digital systems – from customer support and onboarding to research, scheduling, and internal operations. Enterprises are leading the charge; Act (3/25 = Research Preview Release) Agent Released Select Capabilities • Automated customer support • Case resolution • Lead qualification • Order tracking • Control computer screen directly to estimates and may not align between companies. Oracle Cloud revenue includes Cloud Services & License Support, as well as Cloud License & On-Premise License. IBM Cloud includes all ‘Infrastructure’ line items
    0 码力 | 340 页 | 12.14 MB | 5 月前
    3
  • pdf文档 TVM: Where Are We Going

    (Py/Java/Go) lib = tvm.module.load("mylib.so") func = lib["npufunction0"] func(a, b) Automatic RPC Support remote = tvm.rpc.connect(board_url, port) remote.upload("mylib.so") remote_mod = remote.load_module(“mylib runtime for dynamic models Credit: Jared Roesch, Haichen Shen et.aluTVM: TVM on bare-metal Devices Support bare-metal J-TAG devices, no OS is needed ARM Cortex-M RISC-V Credit: Logan WeberuTVM upcoming: TPUsTensorization Challenge Compute primitives scalar vector tensor Challenge: Build systems to support emerging tensor instructionsTensorization Challenge C = tvm.compute((m, n), 
 lambda y, x:
    0 码力 | 31 页 | 22.64 MB | 5 月前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    $40 million in profit improvement, all while maintaining satisfaction scores on par with human support. These results didn’t happen overnight. Klarna achieved this performance by continuously testing easier to customize and fine-tune models—whether as a self-service approach or using our tools and support. We worked closely with Lowe’s, the Fortune 50 home improvement company, to improve the accuracy with AI every day, so we’re often spotting new ways to automate our own work. An example: Our support teams were getting bogged down, spending time accessing systems, trying to understand context, craft
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
  • pdf文档 TVM Meetup Nov. 16th - Linaro

    Driver ● Arm Compute Library has been integrated by: ○ MATLAB Coder ○ ONNX RuntimeArm platform support in TVM upstream IPs Target Hardware/Model Options Codegen CPU arm_cpu pixel2 (snapdragon 835), t860) N/A opencl bifrost hikey960 (mali g71) N/A FPGA vta pynq, ultra96 N/A sdaccel Out-of-tree support or WIP: Hexagon DSP (via llvm), Ascend NPU, and more Green: Linaro 96BoardsLinaro for TVM ● Linaro Linaro AI/ML group can be a good fit for TVM collaborations on Arm based platforms to support more devices with various accelerator configurations (from microcontrollers to HPC) by working together with
    0 码力 | 7 页 | 1.23 MB | 5 月前
    3
  • pdf文档 TVM@AliOS

    2019.6 ee 2019.10 Alios TVM Team Set up TFLite Quantized Support 1.61X MobilenetVl TFlite TV Hexagon DSP | Inference Engine DSP (Qualcomm) PART TWO Alios TVM @ ARM CPU AiOS 1驱动万物智能 Alios TVMQOARM CPU 。 Support TFLite ( Open Source and Upstream Master ) 。, Optimize on INT8 & FP32 AiiOS ! 驱动万物智能 Alios TVM could generate HVX instruction 。, Add one Hexagon runtimes named as libtvm_hexagon_runtime.so to support parallel. 。 Could run end-to-end TFLite Mobilenet V2 quantized model on Simulator / Device. /NiiOS
    0 码力 | 27 页 | 4.86 MB | 5 月前
    3
共 15 条
  • 1
  • 2
前往
页
相关搜索词
DeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelBringYourOwnCodegentoTVMGooglePromptEngineeringv7OpenAIpracticalguidebuildingagentsOctoMLOSS201911TrendsArtificialIntelligenceWhereAreWeGoingAIintheEnterpriseMeetupNov16thLinaroAliOS
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩