积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(8)人工智能(8)

语言

全部英语(4)zh(4)

格式

全部PDF文档 PDF(8)
 
本次搜索耗时 0.021 秒,为您找到相关结果约 8 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • zh
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    DeepSeek-V2, we partition all routed experts into ? groups {E1, E2, ..., E?}, and deploy each group on a single device. The device-level balance loss is computed as follows: LDevBal = ?2 ? ∑︁ ?=1 ? ′ ? ?′ of FlashAttention-2 (Dao, 2023). We conduct all experiments on a cluster equipped with NVIDIA H800 GPUs. Each node in the H800 cluster contains 8 GPUs connected using NVLink and NVSwitch within nodes. attain a relatively high Model FLOPs Utilization (MFU). During our practical training on the H800 cluster, for training on each trillion tokens, DeepSeek 67B requires 300.6K GPU hours, while DeepSeek-V2
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 Trends Artificial Intelligence

    point operation) is a basic unit of computation used to measure processing power, representing a single arithmetic calculation involving decimal numbers. In AI, total FLOPs are often used to estimate Momentum Performance, 16-bit FLOP/s +150% / Year Enabled by 1.6x annual growth in chips per cluster and 1.6x annual growth in performance per chip Performance of Leading AI Supercomputers (FLOP/s) size of 418 average USA homes – it was built in half the time it typically takes to construct a single American house. Per NVIDIA Co-Founder & CEO Jensen Huang, What they achieved is singular, never
    0 码力 | 340 页 | 12.14 MB | 5 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    Applications that integrate LLMs but don’t use them to control workflow execution—think simple chatbots, single-turn LLMs, or sentiment classifiers—are not agents. More concretely, an agent possesses core characteristics incremental approach. In general, orchestration patterns fall into two categories: 01 Single-agent systems, where a single model equipped with appropriate tools and instructions executes workflows in a loop agents Let’s explore each pattern in detail. 13 A practical guide to building agents Single-agent systems A single agent can handle many tasks by incrementally adding tools, keeping complexity manageable
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    slower response times, which leads to higher costs. Sampling controls LLMs do not formally predict a single token. Rather, LLMs predict probabilities for what the next token could be, with each token in the configuration settings that determine how predicted token probabilities are processed to choose a single output token. Temperature Temperature controls the degree of randomness in token selection. Lower machine learning. A low temperature setting mirrors a low softmax temperature (T), emphasizing a single, preferred temperature with high certainty. A higher Gemini temperature setting is like a high softmax
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 Dynamic Model in TVM

    runtime ● Virtual machine as a new runtime for Relay ● Dynamic codegen (WIP) ○ Kernel dispatch for a single op ○ Graph dispatch for a (sub-)graph In collaboration with Jared Roesch, Zhi Chen, Wei Chen© 2019 Dynamic codegen: op dispatch (proposal) ● Goal: support codegen for dynamic shape ● Challenges ○ Single kernel performs poor across different shapes ○ Different templates for the same op ○ TVM compute
    0 码力 | 24 页 | 417.46 KB | 6 月前
    3
  • pdf文档 Facebook -- TVM AWS Meetup Talk

    user space (~10 lines of Relay IR) - A few days of work - TVM sampling model running in 30us on single server CPU core - Beat hand-written, highly optimized baselines (https://github.com/mozilla/LPCNet)
    0 码力 | 11 页 | 3.08 MB | 6 月前
    3
  • pdf文档 TVM: Where Are We Going

    Binary New Hardware Design in Verilog VerilatorToward Unified IR InfraOverview of New IR Infra Single unified module/pass, type system, with function variants supportCompilation Flow under the New Infra
    0 码力 | 31 页 | 22.64 MB | 6 月前
    3
  • pdf文档 PAI & TVM Meetup - Shanghai 20191116

    delivers groundbreaking AI performance. 。 Performs /mxeo-Drecsion matrix multiply and accumulate in a single operation. Background 全于由 。TensorCore 。 Poograrm171aple matrix-multiply-and-accumulate
    0 码力 | 26 页 | 5.82 MB | 6 月前
    3
共 8 条
  • 1
前往
页
相关搜索词
DeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelTrendsArtificialIntelligenceOpenAIpracticalguidetobuildingagentsGooglePromptEngineeringv7DynamicinTVMFacebookAWSMeetupTalkWhereAreWeGoingPAIShanghai20191116
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩