积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(12)人工智能(12)

语言

全部英语(6)zh(3)[zh](1)日语(1)中文(简体)(1)

格式

全部PDF文档 PDF(12)
 
本次搜索耗时 0.019 秒,为您找到相关结果约 12 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • zh
  • [zh]
  • 日语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 OpenAI - AI in the Enterprise

    platform, introduced a new AI assistant to streamline customer service. Within a few months, the assistant was handling two-thirds of all service chats—doing the work of hundreds of agents and cutting average invested heavily in our API to make it easier to customize and fine-tune models—whether as a self-service approach or using our tools and support. We worked closely with Lowe’s, the Fortune 50 home improvement team Uses it to answer 40,000 questions a year on policies, compliance, and more. The Customer Service team Automates the sentiment analysis of NPS surveys. 16 AI in the EnterpriseAnd the wins continue
    0 码力 | 25 页 | 9.48 MB | 6 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    Although training an MoE model will introduce additional commu- nication overheads, through our operator and communication optimizations, the training for DeepSeek-V2 can attain a relatively high Model compared with dense DeepSeek 67B. Inference Efficiency. In order to efficiently deploy DeepSeek-V2 for service, we first convert its parameters into the precision of FP8. In addition, we also perform KV cache DeepSeek-V2 based on the prompt and generation length distribution from the actually deployed DeepSeek 67B service. On a single node with 8 H800 GPUs, DeepSeek-V2 achieves a generation throughput exceeding 50K tokens
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 Trends Artificial Intelligence

    Admin Costs Margins Marketing Spend Effectivity ROIC Revenues Sales Productivity Customer Service Production / Output Revenue-Focused Cost-Focused ‘Traditional’ Enterprise AI Adoption = Rising Evolution = Chat Responses → Doing Work A new class of AI is now emerging – less assistant, more service provider. What began as basic conversational interfaces may now be evolving into something far (1/25), Amazon (3/25) AI Agent Deployments = AI Incumbent Product Launches Accelerating OpenAI Operator (1/25 = Research Preview Release) Salesforce Agentforce (10/24 = General Release) Anthropic Claude
    0 码力 | 340 页 | 12.14 MB | 5 月前
    3
  • pdf文档 Bring Your Own Codegen to TVM

    subgraphs 1. Implement an operator-level annotator, OR 2. Implement a graph-level annotator© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Option 1: Operator-Level Annotation ● Implement Boolean functions in the template def conv2d(attrs, args): return is_float32(args) Relay operator name Operator attributes and args (inputs) can be checked as well Return True/False for this op After Device General Devices (CPU/GPU/FPGA) Mark supported operators or subgraphs 1. Implement extern operator functions, OR 2. Implement a graph annotator© 2019, Amazon Web Services, Inc. or its Affiliates
    0 码力 | 19 页 | 504.69 KB | 6 月前
    3
  • pdf文档 TVM Meetup: Quantization

    scratch • New Relay passes and TVM schedules required • AlterOpLayout, Graph Fusion etc require work/operator • No reuse of existing Relay and TVM infrastructure. Option 2 – Lower to a sequence of existing 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Lowering of QNN Quantize Operator fn (%input_data: Tensor[(2, 5), float32]) { qnn.quantize(%input_data, out_dtype="uint8", output_zero_point=127 Affiliates. All rights reserved. QNN Conv2D Operator • Calculations are different from FP32 Conv2D https://discuss.tvm.ai/t/tf-lite-quantized-conv2d-operator-conversion/2651/8 𝑟𝑒𝑎𝑙_𝑣𝑎𝑙𝑢𝑒 = 𝒔𝒄𝒂𝒍𝒆
    0 码力 | 19 页 | 489.50 KB | 6 月前
    3
  • pdf文档 Dynamic Model in TVM

    function ● Relax type inference/checking for Any at compilation time ● Register a shape function for operator to check the type and compute the output shape© 2019, Amazon Web Services, Inc. or its Affiliates function ● Relax type inference/checking for Any at compilation time ● Register a shape function for operator to check the type and compute the output shape ● Shape function has two modes (op_attrs, input_tensors function ● Relax type inference/checking for Any at compilation time ● Register a shape function for operator to check the type and compute the output shape ● Shape function has two modes (op_attrs, input_tensors
    0 码力 | 24 页 | 417.46 KB | 6 月前
    3
  • pdf文档 TVM: Where Are We Going

    cuDNN Offload to heavily optimized DNN operator library FrameworksLimitations of Existing Approach cuDNN Frameworks New operator introduced by operator fusion optimization potential benefit: System High-level data flow graph and optimizations Directly generate optimized program for new operator workloads and hardware Hardware FrameworksWhy Automation is the Future Clear winner on
    0 码力 | 31 页 | 22.64 MB | 6 月前
    3
  • pdf文档 Facebook -- TVM AWS Meetup Talk

    3400us (baseline), 40us (target) - 85x speedup - Uh ohEnter, TVM and model co-design - PyTorch operator overhead makes interpreter infeasible - Reduce FLOPs with block-sparsified weight matrices -
    0 码力 | 11 页 | 3.08 MB | 6 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    `f` string syntax for string interpolation is more readable and concise than the traditional `+` operator. 4. The code doesn’t handle errors that might occur during the renaming process. It would be better
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    sequence of steps that must be executed to meet the user’s goal, whether that's resolving a customer service issue, booking a restaurant reservation, committing a code change, 
 or generating a report. Applications judgment, exceptions, or 
 context-sensitive decisions, for example refund approval 
 in customer service workflows. 02 Difficult-to-maintain rules: Systems that have become unwieldy due to extensive and records, or sending messages. Send emails and texts, update a CRM record, hand-off a customer service ticket to a human. Orchestration Agents themselves can serve as tools for other agents—see the
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
OpenAIAIintheEnterpriseDeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelTrendsArtificialIntelligenceBringYourOwnCodegentoTVMMeetupQuantizationDynamicWhereAreWeGoingFacebookAWSTalkGooglePromptEngineeringv7practicalguidebuildingagents
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩