积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(34)人工智能(34)

语言

全部中文(简体)(13)英语(8)zh(6)中文(简体)(2)[zh](1)fj(1)日语(1)kor(1)ro(1)

格式

全部PDF文档 PDF(33)TXT文档 TXT(1)
 
本次搜索耗时 0.021 秒,为您找到相关结果约 34 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 中文(简体)
  • 英语
  • zh
  • 中文(简体)
  • [zh]
  • fj
  • 日语
  • kor
  • ro
  • 全部
  • PDF文档 PDF
  • TXT文档 TXT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Trends Artificial Intelligence

    BOND May 2025 Trends – Artificial IntelligenceTrends – Artificial Intelligence (AI) May 30, 2025 Mary Meeker / Jay Simons / Daegwon Chae / Alexander Krey2 Context We set out to compile foundational datapoints turned into this beast. As soon as we updated one chart, we often had to update another – a data game of whack-a-mole… a pattern that shows no sign of stopping…and will grow more complex as competition The pace and scope of change related to the artificial intelligence technology evolution is indeed unprecedented, as supported by the data. This document is filled with user, usage and revenue charts
    0 码力 | 340 页 | 12.14 MB | 5 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    LLaMA 2 70B LLaMA 3 8B LLaMA 3 70B Mistral 7B Mixtral 8x7B Mixtral 8x22B Command R Command R+ Grok-1 DBRX Qwen1.5 32B Qwen1.5 72B LLaMA 1 Family LLaMA 2 Family LLaMA 3 Family Mixtral Family . . . . . . . . . . . . . . . . 11 3 Pre-Training 11 3.1 Experimental Setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1.1 Data Construction . . . . . . . . . . . . . . . . . . . . . 31 E Discussion About Pre-Training Data Debiasing 32 F Additional Evaluations on Math and Code 33 G Evaluation Formats 34 3 1. Introduction In the past few years, Large Language
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    AI in the Enterprise Lessons from seven frontier companiesContents A new way to work 3 Executive summary 5 Seven lessons for enterprise AI adoption Start with evals 6 Embed AI into your products adding value. 03 Powering products By delivering more relevant and responsive customer experiences. 3 AI in the EnterpriseBut leveraging AI isn’t the same as building software or deploying cloud apps. The employees can focus on 
 the things only people can do. And because AI can process huge amounts of data from many sources, it can create customer experiences that feel more human because they’re more relevant
    0 码力 | 25 页 | 9.48 MB | 6 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    guide, you’ll have the foundational knowledge you need to confidently start building your first agent. 3 A practical guide to building agents What is an agent? While conventional software enables users to error-prone, 
 for example performing vendor security reviews. 03 Heavy reliance on unstructured data: Scenarios that involve interpreting natural language, 
 extracting meaning from documents, or interacting implement the same concepts using your preferred library or building directly from scratch. Python 1 2 3 4 5 6 weather_agent = Agent( name= instructions= tools=[get_weather], ) , "Weather agent"
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • pdf文档 Manus AI:Agent元年开启

    2025!3" Manus AI!Agent"#$ChatGPT%& #$% SAC NO. S0570519080006 | SFC NO. BQZ938 &'( SAC NO. S05701220801381 !"#$%&'() !"#$ • !"#$%&'()*AI+!"#$,-./012334%&'(56789:;<=>?@A BC%&'() • DEFGHI)*DEFGJKH ‚ƒc„…†Agent…‡ˆAGIO‰Š‹Œ•1 Manus AI!"#$%&'Agent3 Manus AI%&'() • Manus !"#$%&'()*+,-./012345-6708,9):;<=>Manus ?@A+'BCDEFGHIJK,LMN OPQMR<"S>TUVWXY3 less structure more intelligence GZ[5\]^_`abcde_`fgchi_`jEc'k_` lm LJKŒkF,•mP$ŒŽ4••‘JK’3“”,\M•–P,Manus —˜•™&š›Gœ=> !"#$%Bloomberg*&'()4 Manus AI%*+,- !"#$%Bloomberg*&'()5 Manus AI%./01 • GAIA !"#%‡•ž$% AI Ÿ G¡¢ž£,¤¥-UL6¦§¨©ª«Level 1cLevel 2cLevel 3¬G-•>Manus AI L®‰¯#
    0 码力 | 23 页 | 4.87 MB | 6 月前
    3
  • pdf文档 TVM@AliOS

    1驱动万物智能 AliOs overview 。 AliOs (www.alios.cn) is a newly designed to drive everything toward intelligence. The Alios is running in vehicles, Phone, Pad and loT terminals. Provide cloud and devices co-related Upstream Master ) 。, Optimize on INT8 & FP32 AiiOS ! 驱动万物智能 Alios TVM @ ARM CPU INT8 * Cache 芍四 Data FO Data FOData … QNNPACK Convolution 。,NHWC layout Cach, 浆百 FeU Cach- 区下 。, Cache 大站 Fe Data FO Data … FOData QNNPACK /NiiOS ! 驱动万物智能 P Cache 浆加 Data FO Data FOData … NHWC L2 da … FL2 da Alios TVM @ ARM CPU INT8 TVM /QNNPACK Speed Up @ Mobilenet V2 @ rasp 3b+ AARCH64 35
    0 码力 | 27 页 | 4.86 MB | 6 月前
    3
  • pdf文档 PAI & TVM Meetup - Shanghai 20191116

    TensorCore AutocCodeGen and Mixed-Precision Training/Inference PAI (Platform of AD Alibaba Cloud Intelligence Outline 计算平台事业部 。TensorCore AutoCodeGen memory load latency 。 storage align to reduce bank conflicts of shared memory 。 Virtual threads for data reuse (on going) Performance on V100 (FP16) 计算平台事业部 COMPUTING PLATFORM 512, 16, 512 512, 32, 512
    0 码力 | 26 页 | 5.82 MB | 6 月前
    3
  • pdf文档 普通人学AI指南

    . . . . . . . 8 2.2.4 SD (Stable Diffusion) . . . . . . . . . . . . . . . . . . . . 8 2.2.5 DALLE3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.6 Midjourney . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.6.4 Llama3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3 零代码本地部署 AI 后端 13 3.1 大模型 Llama3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1.3 使用 Llama3 . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 大模型 phi-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2.1 Ollama 安装 phi-3 . . . . . . . . . . . .
    0 码力 | 42 页 | 8.39 MB | 8 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    as image prompts) is the input the model uses to predict a specific output. You don’t need to be a data scientist or a machine learning engineer – everyone can write a prompt. However, crafting the most complicated. Many aspects of your prompt affect its efficacy: the model you use, the model’s training data, the model configurations, your word-choice, style and tone, structure, and context all matter. Therefore responses, and can hinder the model’s ability to provide meaningful output. You don’t need to be a data scientist or a machine learning engineer – everyone can write a prompt. Prompt Engineering February
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 Dynamic Model in TVM

    shapes ○ Dynamic inputs: batch size, image size, sequence length, etc. ○ Output shape of some ops are data dependent: arange, nms, etc. ○ Control flow: concatenate within a while loop Limitation of TVM/graph typing Any: represent an unknown dimension at compilation time. Define a tensor type: Tensor<(Any, 3, 32, 32), fp32> Define type relation: arange: fn(start:fp32, stop:fp32, step:fp32) -> Tensor<(Any) modes (op_attrs, input_tensors, out_ndims) -> out_shape_tensors ○ Data dependent (op_attrs, input_data, out_ndims) -> out_shape_tensors ○ Data independent (op_attrs, input_shapes, out_ndims) -> out_shape_tensors©
    0 码力 | 24 页 | 417.46 KB | 6 月前
    3
共 34 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
TrendsArtificialIntelligenceDeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelOpenAIAIintheEnterprisepracticalguidetobuildingagentsManusAgent元年开启TVMAliOSPAIMeetupShanghai20191116普通通人普通人指南GooglePromptEngineeringv7Dynamic
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩