积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(10)人工智能(10)

语言

全部英语(6)ro(1)zh(1)中文(简体)(1)中文(简体)(1)

格式

全部PDF文档 PDF(10)
 
本次搜索耗时 0.029 秒,为您找到相关结果约 10 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • ro
  • zh
  • 中文(简体)
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Google 《Prompt Engineering v7》

    uncertainty accommodates scenarios where a rigid, precise temperature may not be essential like for example when experimenting with creative outputs. Top-K and top-P Top-K and top-P (also known as nucleus Language) in Vertex AI,6 which provides a playground to test prompts. In Table 1, you will see an example zero-shot prompt to classify movie reviews. The table format as used below is a great way of documenting unchecked. I wish there were more movies like this masterpiece. Sentiment: Output POSITIVE Table 1. An example of zero-shot prompting When zero-shot doesn’t work, you can provide demonstrations or examples in
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    prompts, exhibits unique characteristics that are distinct from the training on general data. For example, the mathematical and coding abilities of our model can keep improving over a longer period of training slightly worse on the test sets that are closely associated with specific regional cultures. For example, when evaluated on MMLU, although DeepSeek-V2 achieves comparable or superior performance on the 正确的是选项:(A)三者都 存在于蓝藻中(B)三者都含有DNA (C)三者都是ATP 合成的场所(D)三者的膜结 构中都含有蛋白质 答案:从A到D, 我们应选择 Table 12 | An example of AGIEval. 34 PROMPT Question: A sample in a cylindrical container has a cylindrical shape and
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    to workflows where traditional deterministic and rule-based approaches fall short. Consider the example of payment fraud analysis. A traditional rules engine works like a checklist, flagging transactions decision-making: Workflows involving nuanced judgment, exceptions, or 
 context-sensitive decisions, for example refund approval 
 in customer service workflows. 02 Difficult-to-maintain rules: Systems that have become unwieldy due to extensive and intricate rulesets, making updates costly or error-prone, 
 for example performing vendor security reviews. 03 Heavy reliance on unstructured data: Scenarios that involve
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • pdf文档 Trends Artificial Intelligence

    whether Witness A or Witness B was an AI system. Results: The conversation on the left is an example Turing Test carried out in 3/25 using GPT-4.5. During the test, participants incorrectly identified centers…are, in fact, AI factories. That race is moving faster than many expected. The most striking example may be xAI’s Colossus facility in Memphis, Tennessee which went from a gutted factory to a fully applying/using these models – known as inference – is falling quickly. Hardware is improving – for example, NVIDIA’s 2024 Blackwell GPU consumes 105,000x less energy per token than its 2014 Kepler GPU predecessor
    0 码力 | 340 页 | 12.14 MB | 5 月前
    3
  • pdf文档 Bring Your Own Codegen to TVM

    Dense Your Chip Your Chip© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Example showcase: Intel MKL-DNN (DNNL) library 1. Import packages import numpy as np from tvm import relay build_extern(mod, “dnnl”)© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Example: Annotate an Entire Graph After Annotation op op op op data weight1 weight3 weight2 output the external function© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Example: Dispatch Codegen Built Shared Library runtime::PackedFunc DNNLModule::GetFunction( const std::string&
    0 码力 | 19 页 | 504.69 KB | 5 月前
    3
  • pdf文档 Dynamic Model in TVM

    in const_range(len(inputs)): out[i] += inputs[j][i] return out Shape function example Use hybrid script to write shape function Input shape tensors Type checking Data independent© independent© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Shape function example @script def _arange_shape_func(start, stop, step): out = output_tensor((1,), "int64") out[0] = 16) (17, 32) ...© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. API Example input_name = "data" input_shape = [tvm.relay.Any(), 3, 224, 224] dtype = "float32" block = g
    0 码力 | 24 页 | 417.46 KB | 5 月前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    OpenAI, we live with AI every day, so we’re often spotting new ways to automate our own work. An example: Our support teams were getting bogged down, spending time accessing systems, trying to understand the front lines of AI to help guide your own thinking. Product Note: Operator Operator is an example of OpenAI’s agentic approach. Leveraging its own virtual browser, Operator can navigate the web
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
  • pdf文档 DeepSeek从入门到精通(20250204)

    明确说明目标受众。 • Structure (结构): 为输出的内容提供明确的组织结 构,包括段落安排、论点展开顺序或其他逻辑关系。 • Tone (语气): 指定模型回答时的语气或风格。 • Example (示例):例子或模板可帮助模型理解输出风 格或格式。 2. ALIGN框架 • Aim (目标): 明确任务的最终目标。 • Level (难度级别): 定义输出的难度级别。 • Input 普通的互联网用户,非技术背景。 • Structure: 文章需要有明确的开头、中间讨论和结尾, 开头提出问题,中间介绍原因和影响,结尾提供建议。 • Tone: 采用友好、易懂的语气。 • Example: 类似于《纽约时报》科技专栏的风格。 三重概率:多层互动 逐层精炼 AIGC的三层概率交互的内容生成体系,描述了
    0 码力 | 104 页 | 5.37 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    明确说明目标受众。 • Structure (结构): 为输出的内容提供明确的组织结 构,包括段落安排、论点展开顺序或其他逻辑关系。 • Tone (语气): 指定模型回答时的语气或风格。 • Example (示例):例子或模板可帮助模型理解输出风 格或格式。 2. ALIGN框架 • Aim (目标): 明确任务的最终目标。 • Level (难度级别): 定义输出的难度级别。 • Input 普通的互联网用户,非技术背景。 • Structure: 文章需要有明确的开头、中间讨论和结尾, 开头提出问题,中间介绍原因和影响,结尾提供建议。 • Tone: 采用友好、易懂的语气。 • Example: 类似于《纽约时报》科技专栏的风格。 三重概率:多层互动 逐层精炼 AIGC的三层概率交互的内容生成体系,描述了
    0 码力 | 103 页 | 5.40 MB | 8 月前
    3
  • pdf文档 XDNN TVM - Nov 2019

    '], attrs['model_name'], outs[0], *ins ), name=name) return out >> 10© Copyright 2018 Xilinx Example of FPGA node in TVM graph { "nodes": [ { "op": "null", "name": "data", "inputs": [] }, { "op":
    0 码力 | 16 页 | 3.35 MB | 5 月前
    3
共 10 条
  • 1
前往
页
相关搜索词
GooglePromptEngineeringv7DeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelOpenAIpracticalguidetobuildingagentsTrendsArtificialIntelligenceBringYourOwnCodegenTVMDynamicinAItheEnterprise入门精通20250204清华华大大学清华大学XDNNNov2019
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩