积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(10)人工智能(10)

语言

全部英语(6)[zh](1)kor(1)ro(1)zh(1)

格式

全部PDF文档 PDF(10)
 
本次搜索耗时 0.021 秒,为您找到相关结果约 10 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • [zh]
  • kor
  • ro
  • zh
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Trends Artificial Intelligence

    Source: Richard Hirsh; John McCallum; OpenAI Details on Page 138 0 Years 72 Years Electric Power Computer Memory AI Inference AI Monetization Threats = Rising Competition + Open-Source Momentum ‘make it easy to do business anywhere.’ Facebook’s founding mission (2004) was ‘to give people the power to share and make the world more open and connected.’ Fast forward to today with the world’s organized and accessible information being supercharged by artificial intelligence, accelerating computing power, and semi-borderless capital…all driving massive change. Sport provides a good analogy for AI’s constant
    0 码力 | 340 页 | 12.14 MB | 5 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    February 2025 10 deterministic: the highest probability token is always selected (though note that if two tokens have the same highest predicted probability, depending on how tiebreaking is implemented you experimenting with creative outputs. Top-K and top-P Top-K and top-P (also known as nucleus sampling)4 are two sampling settings used in LLMs to restrict the predicted next token to come from tokens with the top mathematical tasks and can provide incorrect answers – even for a task as simple as multiplying two numbers. This is because they are trained on large volumes of text and math may require a different
    0 码力 | 68 页 | 6.50 MB | 7 月前
    3
  • pdf文档 XDNN TVM - Nov 2019

    CPU FPGA CPU CPU FPGA - More than supported/not supported, pattern matching graph colorization - Choices how to partition especially for multi-branch networks (i.e. YOLOv3, SSD)© Copyright 2018 Xilinx ZC104/Ultra96) https://github.com/Xilinx/ml-suite/blob/master/examples/caffe/Benchmark_README.md Two measurements we track: Latency & Throughput ˃ ML pipeline contains multiple stages, performance limited
    0 码力 | 16 页 | 3.35 MB | 6 月前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    Indeed, the world’s No. 1 job site, uses GPT-4o mini to match job seekers to jobs in new ways. The power of why Making great job recommendations to job seekers is only the start of the Indeed experience new AI assistant to streamline customer service. Within a few months, the assistant was handling two-thirds of all service chats—doing the work of hundreds of agents and cutting average resolution times each other As the previous examples show, every business is full of opportunities to harness the power of AI for improved outcomes. The use cases may vary by company and industry but the lessons apply
    0 码力 | 25 页 | 9.48 MB | 6 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    supplementary mechanisms to control communication overheads and ensure load balance. By combining these two techniques, DeepSeek-V2 features strong performance (Figure 1(a)), economical training costs, and efficient Architecture For FFNs, we employ the DeepSeekMoE architecture (Dai et al., 2024). DeepSeekMoE has two key ideas: segmenting experts into finer granularity for higher expert specialization and more accurate abilities of our model can keep improving over a longer period of training steps. Therefore, we employ a two-stage RL training strategy, which first performs reasoning alignment, and then performs human prefer-
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 OctoML OSS 2019 11 8

    learning tr tvm 。 @zxnet 和os 全 W Open Source at OctoML ee We are big believers in the power of open source o 5S$ponsoring multiple employees to contribute to TVML. ee Today we'ltouch on a few
    0 码力 | 16 页 | 1.77 MB | 6 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    achieve greater success with an incremental approach. In general, orchestration patterns fall into two categories: 01 Single-agent systems, where a single model equipped with appropriate tools and instructions in numerous ways for specific workflows and requirements, our experience with customers highlights two broadly applicable categories: Manager (agents as tools) A central “manager” agent coordinates multiple escalating the issue 
 to a human agent. For a coding agent, this means handing control back to the user. Two primary triggers typically warrant human intervention: Exceeding failure thresholds: Set limits on
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • pdf文档 Dynamic Model in TVM

    shape function for operator to check the type and compute the output shape ● Shape function has two modes (op_attrs, input_tensors, out_ndims) -> out_shape_tensors ○ Data dependent (op_attrs, input_data shape function for operator to check the type and compute the output shape ● Shape function has two modes (op_attrs, input_tensors, out_ndims) -> out_shape_tensors ○ Data dependent (op_attrs, input_data
    0 码力 | 24 页 | 417.46 KB | 6 月前
    3
  • pdf文档 Bring Your Own Codegen to TVM

    return new_call© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Comparison of Two Options Op-level annotation ● Simple and easy to implement 👍 ● One op per subgraph results in overhead
    0 码力 | 19 页 | 504.69 KB | 6 月前
    3
  • pdf文档 TVM@AliOS

    CPU (ARM、Intel) 1驱动万物智能 Accelerated Op Library / Others Inference Engine DSP (Qualcomm) PART TWO Alios TVM @ ARM CPU AiOS 1驱动万物智能 Alios TVMQOARM CPU 。 Support TFLite ( Open Source and Upstream
    0 码力 | 27 页 | 4.86 MB | 6 月前
    3
共 10 条
  • 1
前往
页
相关搜索词
TrendsArtificialIntelligenceGooglePromptEngineeringv7XDNNTVMNov2019OpenAIAIintheEnterpriseDeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelOctoMLOSS11practicalguidetobuildingagentsDynamicBringYourOwnCodegenAliOS
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩