积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(23)人工智能(23)

语言

全部英语(6)中文(简体)(6)zh(5)中文(简体)(2)[zh](1)fj(1)日语(1)ro(1)

格式

全部PDF文档 PDF(22)TXT文档 TXT(1)
 
本次搜索耗时 0.027 秒,为您找到相关结果约 23 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • 中文(简体)
  • zh
  • 中文(简体)
  • [zh]
  • fj
  • 日语
  • ro
  • 全部
  • PDF文档 PDF
  • TXT文档 TXT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Dynamic Model in TVM

    rights reserved. Presenter: Haichen Shen, Yao Wang Amazon SageMaker Neo, Deep Engine Science Dynamic Model in TVM AWS AI© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Models with with dynamism ● Control flow (if, loop, etc) ● Dynamic shapes ○ Dynamic inputs: batch size, image size, sequence length, etc. ○ Output shape of some ops are data dependent: arange, nms, etc. ○ Control models© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Support dynamic model in TVM ● Support Any-dim in typing ● Use shape function to compute the type at runtime ● Virtual
    0 码力 | 24 页 | 417.46 KB | 6 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    Efficient Mixture-of-Experts Language Model DeepSeek-AI research@deepseek.com Abstract We present DeepSeek-V2, a strong Mixture-of-Experts (MoE) language model characterized by economical training and DeepSeek-V2 and its chat versions still achieve top-tier performance among open-source models. The model checkpoints are available at h t t p s : / / g i t h u b . c o m / d e e p s e e k - a i / D e e p Work 21 A Contributions and Acknowledgments 27 B DeepSeek-V2-Lite: A 16B Model Equipped with MLA and DeepSeekMoE 29 2 B.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    writing styles 59 For few-shot prompting with classification tasks, mix up the classes 59 Adapt to model updates 60 Experiment with output formats 60 JSON Repair 61 Working with Schemas 62 Experiment When thinking about a large language model input and output, a text prompt (sometimes accompanied by other modalities such as image prompts) is the input the model uses to predict a specific output. You can be complicated. Many aspects of your prompt affect its efficacy: the model you use, the model’s training data, the model configurations, your word-choice, style and tone, structure, and context
    0 码力 | 68 页 | 6.50 MB | 7 月前
    3
  • pdf文档 Trends Artificial Intelligence

    Change Happening Faster Than Ever? Yes, It Is • AI User + Usage + CapEx Growth = Unprecedented • AI Model Compute Costs High / Rising + Inference Costs Per Token Falling = Performance Converging + Developer 2/24 2/25 4/25 75% 60% 10% 21% 15% 0% Details on Page 293 USA – LLM #1 China USA – LLM #2 AI Model Compute Costs High / Rising + Inference Costs Per Token Falling = Performance Converging + Developer Change Happening Faster Than Ever? Yes, It Is • AI User + Usage + CapEx Growth = Unprecedented • AI Model Compute Costs High / Rising + Inference Costs Per Token Falling = Performance Converging + Developer
    0 码力 | 340 页 | 12.14 MB | 5 月前
    3
  • pdf文档 TVM Meetup: Quantization

    = multiply(%1, 4 /* ty=int32 */) /* ty=Tensor[(1, 3, 2, 3), int32] */; %3 = nn.avg_pool2d(%2, pool_size=[2, 2]) /* ty=Tensor[(1, 3, 1, 2), int32] */; %4 = sum(%3, axis=[1], keepdims=True) /* ty=Tensor[(1 Metric – Latency in ms for batch size = 1 • 1.7x speedup on Inception asymmetric quantized model • Mobilenet requires depthwise convolution VNNI schedule • Symmetric model improves the speedup to 2.8x© All rights reserved. Conclusion • TVM community is pursuing both Automatic- and Pre-quantized model support. Contributions are welcomed. • We need new/tuned TVM schedules using fast Integer operations
    0 码力 | 19 页 | 489.50 KB | 6 月前
    3
  • pdf文档 XDNN TVM - Nov 2019

    Overlay Processor ˃ DNN Specific Instruction Set Convolution, Max Pool etc. ˃ Any Network, Any Image Size ˃ High Frequency & High Compute Efficiency ˃ Supported on U200 – 3 Instances U250 – 4 Instances >> 4© Copyright 2018 Xilinx Inference Flow >> 5 MxNet CPU Layers FPGA Layers Runtime Image Model Weights Calibration Set Quantizer Compiler Tensor Graph Optimization Framework Tensor Graph to ins, outs: tvm.call_packed('tvm.accel.accel_fused', attrs['path'], attrs['output_layout'], attrs['model_name'], outs[0], *ins ), name=name) return out >> 10© Copyright 2018 Xilinx Example of FPGA node
    0 码力 | 16 页 | 3.35 MB | 6 月前
    3
  • pdf文档 Bring Your Own Codegen to TVM

    on widely-used operators (e.g. conv2d, dense, ReLU, etc) Now your customer wants to run a YOLO model, but... ResNet-50 Dense Non Maximum Suppression Non Maximum Suppression (NMS) is too new to import relay 2. Load a pretrained network mod, params = relay.testing.mobilenet.get_workload(batch_size=1) 3. Partition and build the network with an external codegen mod = relay.build_extern(mod, “dnnl”) the inference exe = relay.create_executor(“vm”, mod=mod, ctx=tvm.cpu(0)) data = np.random.uniform(size=(1, 3, 224, 224)).astype(“float32”) out = exe.evaluate()(data, **params) How Would That Look Like
    0 码力 | 19 页 | 504.69 KB | 6 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    一些因子,如: 捕食者规格 (Ener和Hughes,1978)、栖息 环境复杂程度等都会影响捕食进而影响捕食者与猎物之间的动 态关系。 Some factors, such as predator size (Elner andHughes, 1978) and habitat complexity, can affectpredation and subsequently influence the Belk (2018). A universal material+testing machine(MTS System Corporation, Eden Prairie, MIN, USA, Model 661; Fig1,)was used to determine the shell strength. Each shell valve was placed horizontally with Belk (2018). A universal material-testing machine (MTS System Corporation, Eden Prairie, MN, USA, Model 661; Fig. 1) was used to determine the shell strength. Each shell valve was placed horizontally with
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    design foundations In its most fundamental form, an agent consists of three core components: 01 Model The LLM powering the agent’s reasoning and decision-making 02 Tools External functions or APIs the the workflow. Not every task requires the smartest model—a simple retrieval or intent classification task may be handled by a smaller, faster model, while harder tasks like deciding whether to approve approve a refund may benefit from a more capable model. An approach that works well is to build your agent prototype with the most capable model for every task to establish a performance baseline. From there
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    They started with three model evals: 01 Language translation Measuring the accuracy and quality of translations produced 
 by a model. 02 Summarization Evaluating how a model condenses information, using resilient to change. 
 Evals are built around tasks that measure 
 the quality of the output of a model against 
 a benchmark—is it more accurate? More compliant? Safer? Your key metrics will depend on more tokens. To increase efficiency, OpenAI and Indeed 
 worked together to fine-tune a smaller GPT model that was able to deliver similar results 
 with 60% fewer tokens. Helping job seekers find the
    0 码力 | 25 页 | 9.48 MB | 6 月前
    3
共 23 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
DynamicModelinTVMDeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageGooglePromptEngineeringv7TrendsArtificialIntelligenceMeetupQuantizationXDNNNov2019BringYourOwnCodegento清华大学DeepResearch科研OpenAIpracticalguidebuildingagentsAItheEnterprise
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩