积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(12)人工智能(12)

语言

全部英语(6)zh(3)日语(1)ro(1)中文(简体)(1)

格式

全部PDF文档 PDF(12)
 
本次搜索耗时 0.050 秒,为您找到相关结果约 12 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • zh
  • 日语
  • ro
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Google 《Prompt Engineering v7》

    style and tone, structure, and context all matter. Therefore, prompt engineering is an iterative process. Inadequate prompts can lead to ambiguous, inaccurate responses, and can hinder the model’s ability right sequence of tokens. Prompt engineering is the process of designing high-quality prompts that guide LLMs to produce accurate outputs. This process involves tinkering to find the best prompt, optimizing creating a loop due to the vast number of available options. In both cases, the model's sampling process gets "stuck," resulting in monotonous and unhelpful output until the output window is filled. Solving
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    total KV cache containing (?? + ?? ℎ)? elements. In order to demonstrate the complete computation process of MLA, we also organize and provide its full formulas in Appendix C. 2.1.4. Comparison of Key-Value device-level balance loss to ensure balanced computation across different devices. In the training process of DeepSeek-V2, we partition all routed experts into ? groups {E1, E2, ..., E?}, and deploy each However, we also notice a phenomenon of “alignment tax” (Ouyang et al., 2022), i.e., the alignment process can negatively impact the performance on some standard benchmarks such as BBH. In order to alleviate
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    summary Seven lessons for enterprise AI adoption 01 Start with evals Use a systematic evaluation process to measure how 
 models perform against your use cases. 02 Embed AI in 
 your products Create new can dramatically increase value. 05 Get AI in the hands 
 of experts The people closest to a process are best-placed to improve 
 it with AI. 06 Unblock your
 developers Automating the software development conduct intensive evals for every proposed application. An eval is simply a rigorous, structured process for measuring how AI models actually perform against benchmarks 
 in a given use case. It’s also
    0 码力 | 25 页 | 9.48 MB | 6 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    ), ], 19 A practical guide to building agents 24 25 26 27 28 29 30 32 32 33 ) main(): msg = input( ) orchestrator_output = await Runner.run( manager_agent,msg) 30 31 32 33 34 35 36 37 38 39 40 41 42 ), tools=[track_order_status, initiate_refund_process] ) triage_agent = Agent( name=Triage Agent", instructions= , handoffs=[technical_support_agent guardrails such as regex, and the OpenAI moderation API to vet our user inputs. Respond ‘we cannot process your message. Try again!’ Continue with function call Handoff to Refund agent Call initiate_

    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    捕食是一个基本的生态过程,捕食的定义为:一种生物(捕食 者)捕食了另一种生物(猎物)(Begon等,1997)。 Predation is a fundamental ecological process,defined as one organism (predator) preying onanother organism (prey) (Begon et al., 1997). 在群 types of materials suffer from large volume expansion/shrinkage during the lithiation/delithiation process, leading to the formation of cracks, separation of active material from the current collector, alloy-based anodes have significant drawbacks. The main issue lies in their large volume expansion and shrinkage during the lithiation and delithiation process. This can result in the formation of cracks,
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 XDNN TVM - Nov 2019

    multi-process pipeline using shared memory Usually need >4 Pre-Process cores running to keep up with FPGA ˃ TVM pipeline needed. CPU/FPGA partitions ideally run in parallel >> 13 Post-Process (fc/softmax/nms) (fc/softmax/nms) FPGA Acceleration Pre-Process (resize)© Copyright 2018 Xilinx FPGA Pipeline report in MLSuite 1.5 (animated gif of ResNet-50, view in slideshow mode) >> 14© Copyright 2018 Xilinx Quantization
    0 码力 | 16 页 | 3.35 MB | 6 月前
    3
  • pdf文档 Trends Artificial Intelligence

    Launch of ChatGPT 2022* Knowledge Distribution Evolution = Over ~Six Centuries26 Knowledge is a process of piling up facts; wisdom lies in their simplification. Martin H. Fischer, German-born American Milestone Timeline – 2023-2025, per Stanford University *Multimodal = AI that can understand and process multiple data types (e.g., text, images, audio) together. **Open-source = AI models and tools made the next, compressing the time from idea to prototype and from prototype to product. In the process, the barrier to building with AI is collapsing – not just in cost, but in complexity. This is no
    0 码力 | 340 页 | 12.14 MB | 5 月前
    3
  • pdf文档 Dynamic Model in TVM

    exe = relay.vm.compile(mod, target) vm = relay.vm.VirtualMachine(exe) vm.init(ctx) vm.invoke("main", *args) export© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. VM bytecode 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Relay virtual machine def @main(%i: int32) -> int32 { @sum_up(%i) /* ty=int32 */ } def @sum_up(%i1: int32) -> int32 { %0 = equal(%i1 alloc_tensor $8 $7 [] int32 invoke_packed PackedFunc[2] (in: $6, $0, out: $8) move $0 $8 ret $0 main: invoke $1 VMFunc[0]($0) ret $1© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved
    0 码力 | 24 页 | 417.46 KB | 6 月前
    3
  • pdf文档 Bring Your Own Codegen to TVM

    a workload: mod, params = relay.testing.mobilenet.get_workload(batch_size=1) mod[‘main’] = MyAnnotator().visit(mod[‘main’]) mod = relay.build_extern(mod, “dnnl”)© 2019, Amazon Web Services, Inc. or its
    0 码力 | 19 页 | 504.69 KB | 6 月前
    3
  • pdf文档 TVM Meetup: Quantization

    float32]) { qnn.quantize(%input_data, out_dtype="uint8", output_zero_point=127, output_scale=0.5f) } def @main(%input_data: Tensor[(2, 5), float32]) -> Tensor[(2, 5), uint8] { %0 = divide(%input_data, 0.5f /* qnn.conv2d(%data, %weight, … , out_dtype="int32", input_zero_point=1, kernel_zero_point=1)} def @main(%data: Tensor[(1, 3, 2, 3), uint8], %weight: Tensor[(3, 3, 2, 2), uint8]) -> Tensor[(1, 3, 1, 2),
    0 码力 | 19 页 | 489.50 KB | 6 月前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
GooglePromptEngineeringv7DeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelOpenAIAIintheEnterprisepracticalguidetobuildingagents清华大学DeepResearch科研XDNNTVMNov2019TrendsArtificialIntelligenceDynamicBringYourOwnCodegenMeetupQuantization
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩