积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(15)人工智能(15)

语言

全部英语(5)zh(4)中文(简体)(2)[zh](1)日语(1)kor(1)ro(1)

格式

全部PDF文档 PDF(15)
 
本次搜索耗时 0.022 秒,为您找到相关结果约 15 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • zh
  • 中文(简体)
  • [zh]
  • 日语
  • kor
  • ro
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Trends Artificial Intelligence

    layers of AI infrastructure: agentic interfaces, enterprise copilots, real-world autonomous systems, and sovereign models. Rapid advances in artificial intelligence, compute infrastructure, and global ‘AI Index: Mapping the $4 Trillion Enterprise Impact’ via Morgan Stanley (10/23) Enabling Infrastructure CPUs Big Data / Cloud GPUs Computing Cycles Over Time – 1960s-2020s, per Morgan Stanley we access and move information is happening much faster… …AI is a compounder – on internet infrastructure, which allows for wicked-fast adoption of easy-to-use broad-interest services. AI Technology
    0 码力 | 340 页 | 12.14 MB | 5 月前
    3
  • pdf文档 OctoML OSS 2019 11 8

    Apache (incubating) TVM project. A goal is to nurture the TVM community and contribute new infrastructure and features. octom|.ai @octoml Q octoML Founding Team - The Octonauts - 四人全外日 Luis Ceze employees to contribute to TVML. ee Today we'ltouch on a few of those contribution areas: o Core Infrastructure Improvements to TVM o_uTVM: support for microcontrollers in TVM o_ Virtual Machine and dynamic o_ Improved NLP support, with focus on transformers QQ octoML Core Infrastructure Refactors ee New Integer Analysis Infrastructure o_ Supports the ability to handle nested division and modulus o_ Improves
    0 码力 | 16 页 | 1.77 MB | 6 月前
    3
  • pdf文档 TVM Meetup: Quantization

    LLVM, Cuda, C, … Framework Parsers Graph level optimizations Tensor-level optimizations Machine code generation© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Quantization and TVM infrastructure. Option 2 – Lower to a sequence of existing Relay operators • We introduced a new Relay dialect – QNN to encapsulate this work • Complete reuse of Relay pass infrastructure • Possible
    0 码力 | 19 页 | 489.50 KB | 6 月前
    3
  • pdf文档 Facebook -- TVM AWS Meetup Talk

    often prune models to 80%+ sparsity(with retraining) - Massive speedups combined with specialized code-generation techniques (TVM, Xbyak, etc) - Interesting new tradeoffs - how const are parameters FBGEMMPyTorch and TVM - Lots of opportunity in PyTorch - Graph optimization - Existing fusion infrastructure fairly limited (CUDA-only, injective-only) - Kernel synthesis - Dynamic shapes, stride specialization
    0 码力 | 11 页 | 3.08 MB | 6 月前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    faster—a win for everyone. We see a lot of opportunity to continue to invest 
 in this new infrastructure in ways that will help 
 us grow revenue. Chris Hyams CEO 10 AI in the EnterpriseLesson 3 Developers now build consistently 
 high-quality apps, faster, without having to get into the source code. Security, guardrails, and routing logic are all built in. 18 AI in the EnterpriseAs a result,
    0 码力 | 25 页 | 9.48 MB | 6 月前
    3
  • pdf文档 开源中国 2023 大模型(LLM)技术报告

    2023 年前四个月,向量数据库公司融资额 ,超过了 2022 年的总和 (图源:https://www.cbinsights.com/research/generative-ai-infrastructure- vector-database/) 7 / 32 LLM 基础设施:大模型框架及微调 (Fine Tuning) 大模型框架指专门设计用于构建、训练和部署大型机器 学习模型和深度学习模型的软件框架。这些框架提供了 22 / 32 AI 编程新形态:代码生成工具 通过原型或图片直接生成包含代码的完整页面, 。 、 、 都是该形态出色的产品。 tldraw v0.dev Screenshot to code 23 / 32 LLM Agent(AI Agent) LLM Agent 是一种基于 LLM 的智能代理,它能够自主学习和执行任务, 具有一定的“认知能力和决策能力”。LLM Agent
    0 码力 | 32 页 | 13.09 MB | 1 年前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    Prompt Engineering 40 Code prompting 42 Prompts for writing code 42 Prompts for explaining code 44 Prompts for translating code 46 Prompts for debugging and reviewing code 48 What about multimodal information extraction, question and answering, text classification, language or code translation, code generation, and code documentation or reasoning. Please feel free to refer to Google’s prompting guides2 ‘providing an additional task to the system’. For example, you could use a system prompt to generate a code snippet that is compatible with a specific programming language, or you could use a system prompt
    0 码力 | 68 页 | 6.50 MB | 7 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    . . . 31 E Discussion About Pre-Training Data Debiasing 32 F Additional Evaluations on Math and Code 33 G Evaluation Formats 34 3 1. Introduction In the past few years, Large Language Models (LLMs) corpus. Then, we collect 1.5M conversational sessions, which encompass various domains such as math, code, writing, reasoning, safety, and more, to perform Supervised Fine-Tuning (SFT) for DeepSeek-V2 Chat include GSM8K (Cobbe et al., 2021), MATH (Hendrycks et al., 2021), and CMath (Wei et al., 2023). Code datasets include HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021), and CRUXEval (Gu et al
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    whether that's resolving a customer service issue, booking a restaurant reservation, committing a code change, 
 or generating a report. Applications that integrate LLMs but don’t use them to control Explicit guidelines and guardrails defining how the 
 agent behaves Here’s what this looks like in code when using OpenAI’s Agents SDK. You can also implement the same concepts using your preferred library learning of specialized domain-specific languages. In contrast, the Agents SDK adopts a more flexible, code-first approach. Developers can 
 directly express workflow logic using familiar programming constructs
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • pdf文档 普通人学AI指南

    统,以便你可以使用它创建和运行 Docker 容器。 然后再运行一条命令就可以了: docker run -d --name lobe-chat -p 10084:3210 -e ACCESS_CODE=lobe66 lobehub/lobe-chat:latest 22 解释下这条命令,它用于以守护进程模式(后台)运行一个名为 lobe-chat 的 Docker 容器,并设置一些特定参数: 容 器 的 3210 端 口。 这 样, 主 机 的 10084 端 口 的 请 求 会 被 转 发 到 容 器 的 3210 端 口。 -e ACCESS_CODE=lobe66 : 设 置 环 境 变 量 ACCESS_CODE 的 值 为 lobe66 , 这 通 常 是 用 于 在 容 器 内 配 置 应 用 程 序 的 参 数。 lobehub/lobe-chat:latest :
    0 码力 | 42 页 | 8.39 MB | 8 月前
    3
共 15 条
  • 1
  • 2
前往
页
相关搜索词
TrendsArtificialIntelligenceOctoMLOSS201911TVMMeetupQuantizationFacebookAWSTalkOpenAIAIintheEnterprise开源中国2023模型LLM技术报告GooglePromptEngineeringv7DeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelpracticalguidetobuildingagents普通通人普通人指南
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩