积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(8)人工智能(8)

语言

全部英语(5)中文(简体)(2)日语(1)

格式

全部PDF文档 PDF(8)
 
本次搜索耗时 0.031 秒,为您找到相关结果约 8 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • 中文(简体)
  • 日语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Google 《Prompt Engineering v7》

    prompt engineering is an iterative process. Inadequate prompts can lead to ambiguous, inaccurate responses, and can hinder the model’s ability to provide meaningful output. You don’t need to be a data specific character or identity for the language model to adopt. This helps the model generate responses that are consistent with the assigned role and its associated knowledge and behavior. There can can help the model to generate more relevant and informative output, as the model can craft its responses to the specific role that it has been assigned. For example, you could role prompt a gen AI model
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    agreed-upon-metrics for accuracy, relevance, and coherence. 03 Human trainers Comparing AI results to responses from expert advisors, grading for accuracy and relevance. These evals—and others—gave Morgan fine-tuning OpenAI models, the Lowe’s team was able to improve product tagging accuracy 
 by 20%—with error detection improving by 60%. Excitement in the team was palpable when we saw results from fine-tuning were getting bogged down, spending time accessing systems, trying to understand context, craft responses, and take the right actions for customers. So we built an internal automation platform. It works
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    Systems that have become unwieldy due to extensive and intricate rulesets, making updates costly or error-prone, 
 for example performing vendor security reviews. 03 Heavy reliance on unstructured data: 25 A practical guide to building agents Types of guardrails Relevance classifier Ensures agent responses stay within the intended scope 
 by flagging off-topic queries. For example, “How tall is the filters) to prevent known threats like prohibited terms or SQL injections. Output validation Ensures responses align with brand values via prompt engineering and content checks, preventing outputs that 
 could
    0 码力 | 34 页 | 7.00 MB | 5 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    safety. In comparison to the initial version, we improve the data quality to mitigate hallucinatory responses and enhance writing proficiency. We fine-tune DeepSeek-V2 with 2 epochs, and the learning rate is potential of our model, enabling it to select the correct and satisfactory answer from possible responses. 17 Optimizations for Training Efficiency. Conducting RL training on extremely large models places strong performance of DeepSeek-V2 Chat (RL) in generating high-quality and contextually relevant responses, particularly in instruction-based conversation tasks. In addition, we evaluate the Chinese open-ended
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 Trends Artificial Intelligence

    Stanford HAI (4/25) AI Development Trending = Unprecedented42 AI Performance = In Q1:25… 73% of Responses & Rising Mistaken as Human by Testers Note: The Turing test, introduced in 1950, measures a machine’s ‘Large Language Models Pass the Turing Test’ (3/25) via UC San Diego % of Testers Who Mistake AI Responses as Human-Generated – 3/25, per Cameron Jones / Benjamin Bergen Date Released 5/24 1/25 2/25 indistinguishable from that of a human. In the test, if a human evaluator cannot reliably tell whether responses are coming from a human or a machine during a conversation, the machine is said to have passed
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 Manus AI:Agent元年开启

    52-2169-0770 ÷¬ûüÛresearch@htsc.com http://www.htsc.com.hk fg(:nµr•jklm µrýîþÿ!"g#h10î41õnýî10001• ÷øÛ+212-763-8160/ùúÛ+917-725-9702 ÷¬ûü: Huatai@htsc-us.com http://www.htsc-us.com ©‚ƒ,j2022¹fg(:hijklm
    0 码力 | 23 页 | 4.87 MB | 5 月前
    3
  • pdf文档 TVM Meetup: Quantization

    for FP32 number (not a downcast) • Quantized tensor is represented with a scale and a zero point http://on-demand.gputechconf.com/gtc/2017/presentation/s7310-8-bit-inference-with-tensorrt.pdf 𝑟𝑒𝑎𝑙_𝑣𝑎𝑙𝑢𝑒
    0 码力 | 19 页 | 489.50 KB | 5 月前
    3
  • pdf文档 普通人学AI指南

    MaxKB 续 最后点击 Run 按钮,这样一个 MaxKB 容器就搭建完毕了! 5.4 打开 MaxKB 网页 浏览器打开下面链接,复制到浏览器中,看到 MaxKB 应用界面,如图 36所示: http://127.0.0.1:8080 32 Figure 36: 打开 MaxKB 不过这里需要提供登录账号和密码,初始账号:admin,初始密码:MaxKB@123.. 登录进去后,初次登录到
    0 码力 | 42 页 | 8.39 MB | 7 月前
    3
共 8 条
  • 1
前往
页
相关搜索词
GooglePromptEngineeringv7OpenAIAIintheEnterprisepracticalguidetobuildingagentsDeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelTrendsArtificialIntelligenceManusAgent元年开启TVMMeetupQuantization普通通人普通人指南
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩