积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(6)人工智能(6)

语言

全部英语(4)ro(1)zh(1)

格式

全部PDF文档 PDF(6)
 
本次搜索耗时 0.016 秒,为您找到相关结果约 6 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • ro
  • zh
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Google 《Prompt Engineering v7》

    contextual, and role prompts provides a framework for designing prompts with clear intent, allowing for flexible combinations and making it easier to analyze how each prompt type influences the language model’s message print("Files renamed successfully.") ``` These improvements make the code more robust and flexible while also making it easier to read and understand... (The response was truncated because it has a large language model, instead of just relying on text. This can include combinations of text, images, audio, code, or even other formats, depending on the model’s capabilities and the task at hand
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    application UIs—just as a human would. Each tool should have a standardized definition, enabling flexible, many-to-many relationships between tools and agents. Well-documented, thoroughly tested, and reusable templates. Rather than maintaining numerous individual prompts for distinct use cases, use a single flexible base prompt that accepts policy variables. This template approach adapts easily to various contexts between agents. Regardless of the orchestration pattern, the same principles apply: keep components flexible, composable, and driven by clear, well-structured prompts. 17 A practical guide to building agents
    0 码力 | 34 页 | 7.00 MB | 5 月前
    3
  • pdf文档 TVM: Where Are We Going

    y] * B[k], axis=k)) HW Interface Specification by Tensor Expression TensorizationVTA: Open & Flexible Deep Learning Accelerator • Runtime JIT compile accelerator micro code • Support heterogenous better than CPU on the same board. • Move hardware complexity to software HW-SW Blueprint for Flexible Deep Learning Acceleration. Moreau et al. IEEE Micro 2019. VTA Hardware/Software Interface (ISA)
    0 码力 | 31 页 | 22.64 MB | 5 月前
    3
  • pdf文档 Trends Artificial Intelligence

    standalone product (5 days to secure 1MM users). Generative AI = AI that can create content – text, images, audio, or code – based on learned patterns. Source: OpenAI Generative AI – Public Launch of ChatGPT Stanford University *Multimodal = AI that can understand and process multiple data types (e.g., text, images, audio) together. **Open-source = AI models and tools made publicly available for use, modification tests 3/23: OpenAI releases GPT-4, a multimodal* model capable of processing both text & images 3/23: Google releases Bard, its ChatGPT competitor 11/23: 28 countries, including USA, EU
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    controls You choose who can see and manage data, ensuring internal governance and compliance. Flexible retention Adjust settings for logging and storage to match your organization’s policies. For more
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
  • pdf文档 XDNN TVM - Nov 2019

    increase accuracy deploy Y N Model for DPU Origin training data Calibration data (100-1000 images) >> 15© Copyright 2018 Xilinx Adaptable. Intelligent.
    0 码力 | 16 页 | 3.35 MB | 5 月前
    3
共 6 条
  • 1
前往
页
相关搜索词
GooglePromptEngineeringv7OpenAIpracticalguidetobuildingagentsTVMWhereAreWeGoingTrendsArtificialIntelligenceAIintheEnterpriseXDNNNov2019
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩