积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(9)人工智能(9)

语言

全部英语(3)中文(简体)(2)[zh](1)日语(1)ro(1)zh(1)

格式

全部PDF文档 PDF(8)TXT文档 TXT(1)
 
本次搜索耗时 0.016 秒,为您找到相关结果约 9 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • 中文(简体)
  • [zh]
  • 日语
  • ro
  • zh
  • 全部
  • PDF文档 PDF
  • TXT文档 TXT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • text文档 00 Deepseek官方提示词

    社会 #### 使用说明 - 输入 :一段新闻文本。 - 输出 :只输出新闻文本所属的种类,不需要额外解释。 USER 美国太空探索技术公司(SpaceX)的猎鹰 9 号运载火箭(Falcon 9)在经历美国联邦航空管理局(Federal Aviation Administration,FAA)短暂叫停发射后,于当地时间 8 月 31 日凌晨重启了发射任务。 11. 宣传标语生成:让模型生成贴合商品信息的宣传标语。
    0 码力 | 4 页 | 7.93 KB | 7 月前
    3
  • pdf文档 TVM Meetup: Quantization

    dialect© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. TVM Overview Framework Graph Mxnet TF …. parsers Relay Graph Target-independent Relay passes Target-optimized graph .. More targets AutoTVM – Tuning the kernels Optimized Binary Codegen – LLVM, Cuda, C, … Framework Parsers Graph level optimizations Tensor-level optimizations Machine code generation© 2019, Amazon reserved. Quantization Appraoches in TVM Framework FP32 Graph MXNet Parser TF parser …. Relay FP32 Graph Relay Automatic Quantization Relay Int8 Graph Framework Pre-quantized Graph MXNet Parser TF Parser
    0 码力 | 19 页 | 489.50 KB | 5 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    tokens. We optimize the attention modules and Feed-Forward Networks (FFNs) within the Trans- former framework (Vaswani et al., 2017) with our proposed Multi-head Latent Attention (MLA) and DeepSeekMoE. (1) Infrastructures DeepSeek-V2 is trained based on the HAI-LLM framework (High-flyer, 2023), an efficient and light-weight training framework developed internally by our engineers. It employs a 16-way zero-bubble in English and Chinese. Our evaluation is based on our internal evaluation framework integrated 13 in our HAI-LLM framework. Included benchmarks are categorized and listed as follows, where underlined
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 清华大学第二弹:DeepSeek赋能职场

    作为智能体 ü 角色 ü 功能 ü 技能 ü 约束 ü 工作流程 ü 输出格式 "全维度智能体提示框架" (Comprehensive Agent Prompting Framework, CAP Framework) 核心层: 1.身份定义 (Identity) •角色属性 •专业背景 •交互特征 执行层: 2. 能力矩阵 (Capability Matrix) •功能范围
    0 码力 | 35 页 | 9.78 MB | 7 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    Engineering February 2025 19 Distinguishing between system, contextual, and role prompts provides a framework for designing prompts with clear intent, allowing for flexible combinations and making it easier To see this in action, you need to write some code. In code Snippet 1 I am using the langchain framework for Python, together with VertexAI (google-cloud-aiplatform) and the google-search-results pip
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 TVM: Where Are We Going

    Hardware CuDNN NNPack MKL-DNN Hand optimized Open source, automated end-to- end optimization framework for deep learning.TVM Stack High-Level Differentiable IR Tensor Expression and Optimization
    0 码力 | 31 页 | 22.64 MB | 5 月前
    3
  • pdf文档 XDNN TVM - Nov 2019

    Runtime Image Model Weights Calibration Set Quantizer Compiler Tensor Graph Optimization Framework Tensor Graph to Xilinx Tensor Graph Frontend Deep Learning Frameworks https://github.com/xilinx©
    0 码力 | 16 页 | 3.35 MB | 5 月前
    3
  • pdf文档 TVM@AliOS

    nests marked as pipeline 。, Implement complete Hexagon runtime based on community PR. ADSPRPC Framework Applications Processor | | DSP Processor /NiiOS ! 驱动万物智能 Alios
    0 码力 | 27 页 | 4.86 MB | 5 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    condition is met. An effective strategy for managing complexity without switching to a multi-agent framework is to use prompt templates. Rather than maintaining numerous individual prompts for distinct use
    0 码力 | 34 页 | 7.00 MB | 5 月前
    3
共 9 条
  • 1
前往
页
相关搜索词
00Deepseek官方提示TVMMeetupQuantizationDeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModel清华华大大学清华大学第二赋能职场GooglePromptEngineeringv7WhereAreWeGoingXDNNNov2019AliOSOpenAIpracticalguidetobuildingagents
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩