积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(7)人工智能(7)

语言

全部英语(5)zh(1)中文(简体)(1)

格式

全部PDF文档 PDF(7)
 
本次搜索耗时 0.023 秒,为您找到相关结果约 7 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • zh
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 OpenAI - AI in the Enterprise

    AI in the Enterprise Lessons from seven frontier companiesContents A new way to work 3 Executive summary 5 Seven lessons for enterprise AI adoption Start with evals 6 Embed AI into your products new models and capabilities. Our Applied Team turns those models into products, like ChatGPT Enterprise and our API. And our Deployment Team takes these products into companies to address their most shapes future products and models. 4 AI in the EnterpriseExecutive summary Seven lessons for enterprise AI adoption 01 Start with evals Use a systematic evaluation process to measure how 
 models perform
    0 码力 | 25 页 | 9.48 MB | 6 月前
    3
  • pdf文档 Trends Artificial Intelligence

    challengers are racing to build and deploy the next layers of AI infrastructure: agentic interfaces, enterprise copilots, real-world autonomous systems, and sovereign models. Rapid advances in artificial intelligence smartphones, IOT devices, robotics, etc. Source: Weiss et al. ‘AI Index: Mapping the $4 Trillion Enterprise Impact’ via Morgan Stanley (10/23) Enabling Infrastructure CPUs Big Data / Cloud GPUs Computing NVIDIA Co-Founder & CEO Jensen Huang @ COMPUTEX 2025 – 5/2567 ‘Traditional’ Enterprise AI Adoption = Rising Priority68 Enterprise AI Focus – S&P 500 Companies = 50% & Rising Talking-the-Talk . Source:
    0 码力 | 340 页 | 12.14 MB | 5 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    workflows effectively. While it’s tempting to immediately build a fully autonomous agent with complex architecture, customers typically achieve greater success with an incremental approach. In general, orchestration technical issues, system outages, or product troubleshooting." "Sales Assistant Agent" "You help enterprise clients browse the product catalog, recommend suitable solutions, and facilitate purchase transactions guide to building agents More resources API Platform OpenAI for Business OpenAI Stories ChatGPT Enterprise OpenAI and Safety Developer Docs OpenAI is an AI research and deployment company. Our mission
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • pdf文档 开源中国 2023 大模型(LLM)技术报告

    TensorFlow 和 PyTorch 和 Hugging Face Transformers 等。 TensorFlow 架构图 (图源:https://www.geeksforgeeks.org/architecture-of- tensorflow/) 12 / 32 LLM 基础设施:编程语言 LLM 的训练和应用通常使用多种编程语言,取决于任务的需求和团 队的偏好。 。它的广泛使用得 益于其简洁的语法、强大的库支持(如 渐司空见惯。 分析公司 O’Reilly 日前发布一份 《2023 Generative AI in the Enterprise》报告, 报告中指出, 。 图源:https://www.oreilly.com/radar/generative-ai-in-the-enterprise/ 21 / 32 AI 编程工具:插件、IDE、终端 目前最常见的 AI 编程工具大多以插件、IDE 和终端
    0 码力 | 32 页 | 13.09 MB | 1 年前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    and inference efficiency of DeepSeek 67B (Dense) and DeepSeek-V2. Contents 1 Introduction 4 2 Architecture 6 2.1 Multi-Head Latent Attention: Boosting Inference Efficiency . . . . . . . . . . . . . 6 DeepSeekMoE: Training Strong Models at Economical Costs . . . . . . . . . . . . 9 2.2.1 Basic Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.2 Device-Limited Routing characterized by economical training and efficient inference through an innovative Transformer architecture. It is equipped with a total of 236B parameters, of which 21B are activated for each token, and
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 Facebook -- TVM AWS Meetup Talk

    delivering generalized performance 2 Why TVM? XTVM for Speech Synthesis - WaveRNN-style model architecture - Autoregressive sampling net running at faster than real-time - Compute split between GRU
    0 码力 | 11 页 | 3.08 MB | 6 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    the accuracy from there. Adapt to model updates It’s important for you to stay on top of model architecture changes, added data, and capabilities. Try out newer model versions and adjust your prompts to
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
共 7 条
  • 1
前往
页
相关搜索词
OpenAIAIintheEnterpriseTrendsArtificialIntelligencepracticalguidetobuildingagents开源中国2023模型LLM技术报告DeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelFacebookTVMAWSMeetupTalkGooglePromptEngineeringv7
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩