积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(19)人工智能(19)

语言

全部英语(6)zh(5)中文(简体)(2)[zh](1)fj(1)日语(1)kor(1)ro(1)中文(简体)(1)

格式

全部PDF文档 PDF(19)
 
本次搜索耗时 0.026 秒,为您找到相关结果约 19 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • zh
  • 中文(简体)
  • [zh]
  • fj
  • 日语
  • kor
  • ro
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Trends Artificial Intelligence

    datapoints turned into this beast. As soon as we updated one chart, we often had to update another – a data game of whack-a-mole… a pattern that shows no sign of stopping…and will grow more complex as competition related to the artificial intelligence technology evolution is indeed unprecedented, as supported by the data. This document is filled with user, usage and revenue charts that go up-and-to-the-right… often supported Unprecedented • AI Monetization Threats = Rising Competition + Open-Source Momentum + China’s Rise • AI & Physical World Ramps = Fast + Data-Driven • Global Internet User Ramps Powered by AI from Get-Go =
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    maximum generation throughput to 5.76 times. We pretrain DeepSeek-V2 on a high-quality and multi-source corpus consisting of 8.1T tokens, and further perform Supervised Fine-Tuning (SFT) and Reinforcement activated parameters, DeepSeek-V2 and its chat versions still achieve top-tier performance among open-source models. The model checkpoints are available at h t t p s : / / g i t h u b . c o m / d e e p s e (Tokens/Sec) (b) Figure 1 | (a) MMLU accuracy vs. activated parameters, among different open-source models. (b) Training costs and inference efficiency of DeepSeek 67B (Dense) and DeepSeek-V2. Contents
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 TVM: Where Are We Going

    Inference engines DL Compilers Kenrel Libraries Hardware CuDNN NNPack MKL-DNN Hand optimized Open source, automated end-to- end optimization framework for deep learning.TVM Stack High-Level Differentiable Cloud FPGA ASIC Optimization AutoTVM Device FleetExisting Deep Learning Frameworks High-level data flow graph Hardware Primitive Tensor operators such as Conv2D eg. cuDNN Offload to heavily optimized intensiveMachine Learning based Program Optimizer TVM: Learning-based Learning System High-level data flow graph and optimizations Directly generate optimized program for new operator workloads and
    0 码力 | 31 页 | 22.64 MB | 5 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    as image prompts) is the input the model uses to predict a specific output. You don’t need to be a data scientist or a machine learning engineer – everyone can write a prompt. However, crafting the most complicated. Many aspects of your prompt affect its efficacy: the model you use, the model’s training data, the model configurations, your word-choice, style and tone, structure, and context all matter. Therefore responses, and can hinder the model’s ability to provide meaningful output. You don’t need to be a data scientist or a machine learning engineer – everyone can write a prompt. Prompt Engineering February
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 OctoML OSS 2019 11 8

    Q OctoML Open Source at O〇ctoML TVM Meetup 11/8/2019 Jared Roesch OctoML is a new company building DL deployment solutions using the Apache (incubating) TVM project. A goal is to nurture the TVM community and machine learning tr tvm 。 @zxnet 和os 全 W Open Source at OctoML ee We are big believers in the power of open source o 5S$ponsoring multiple employees to contribute to TVML. ee Today implementation httpsJigithub,comlapachelincubator-tvmipull4274 remumn dming data AutoTYM 二 QQ octoML Coming Soon to HTVM (Self-Hosted Models) Host
    0 码力 | 16 页 | 1.77 MB | 5 月前
    3
  • pdf文档 XDNN TVM - Nov 2019

    Instruction Buffer Cross Bar Pooling/ EWA© Copyright 2018 Xilinx Xilinx Edge DPU IP (DPUv2) Source: Published results from Huawei 18% 13% 14% 40% 24% 23% 85% 51% 52% 0% 20% 40% 60% 80% 100% VGG16 ResNet-50 GoogleNet-V3 Aristotle on 7020 FPGA Iphone8plus Kirin 970 CPU MEM CONTROLLER BUS Data Mover IMG WR SCHEDULER WEIGHTS WR SCHEDULER SMART MEM FABRIC IMG RD SCHEDULER WEIGHTS RD node in TVM graph { "nodes": [ { "op": "null", "name": "data", "inputs": [] }, { "op": "tvm_op", "name": "xdnn0", "attrs": { "flatten_data": "0", "func_name": “accel_fused", "num_inputs": "1", "num_outputs":
    0 码力 | 16 页 | 3.35 MB | 5 月前
    3
  • pdf文档 TVM Meetup: Quantization

    Quantize Operator fn (%input_data: Tensor[(2, 5), float32]) { qnn.quantize(%input_data, out_dtype="uint8", output_zero_point=127, output_scale=0.5f) } def @main(%input_data: Tensor[(2, 5), float32]) -> -> Tensor[(2, 5), uint8] { %0 = divide(%input_data, 0.5f /* ty=float32 */) /* ty=Tensor[(2, 5), float32] */; %1 = round(%0) /* ty=Tensor[(2, 5), float32] */; %2 = cast(%1, dtype="int32") /* ty=Tensor[(2 conv2d fn (%data: Tensor[(1, 3, 2, 3), uint8], %weight: Tensor[(3, 3, 2, 2), uint8]) { qnn.conv2d(%data, %weight, … , out_dtype="int32", input_zero_point=1, kernel_zero_point=1)} def @main(%data: Tensor[(1
    0 码力 | 19 页 | 489.50 KB | 5 月前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    employees can focus on 
 the things only people can do. And because AI can process huge amounts of data from many sources, it can create customer experiences that feel more human because they’re more relevant need to explain to the candidate why this specific job was recommended to them. Indeed uses the data analysis and natural language capabilities of GPT-4o mini to shape these ‘why’ statements in their function. With thousands of suppliers, Lowe’s often has to work with incomplete or inconsistent product data. 13 AI in the EnterpriseThe key is in accurate product descriptions and tagging. But it also requires
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
  • pdf文档 TVM@AliOS

    TVMQOARM CPU 。 Support TFLite ( Open Source and Upstream Master ) 。, Optimize on INT8 & FP32 AiiOS ! 驱动万物智能 Alios TVM @ ARM CPU INT8 * Cache 芍四 Data FO Data FOData … QNNPACK Convolution 。,NHWC re 。 Tensorize GEMM Cache 大站 Fe Data FO Data … FOData QNNPACK /NiiOS ! 驱动万物智能 P Cache 浆加 Data FO Data FOData … NHWC L2 da … FL2 da Alios TVM @ ARM CPU INT8 TVM /QNNPACK
    0 码力 | 27 页 | 4.86 MB | 5 月前
    3
  • pdf文档 TVM Meetup Nov. 16th - Linaro

    collaborative seamless integration with the ecosystem of AI/ML software frameworks and librariesArm NN open source project ● Linaro-hosted https://www.mlplatform.org/ ● Git and review servers ● Forums and issue
    0 码力 | 7 页 | 1.23 MB | 5 月前
    3
共 19 条
  • 1
  • 2
前往
页
相关搜索词
TrendsArtificialIntelligenceDeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelTVMWhereAreWeGoingGooglePromptEngineeringv7OctoMLOSS201911XDNNNovMeetupQuantizationOpenAIAIintheEnterpriseAliOS16thLinaro
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩