积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(7)人工智能(7)

语言

全部英语(5)fj(1)zh(1)

格式

全部PDF文档 PDF(7)
 
本次搜索耗时 0.018 秒,为您找到相关结果约 7 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • fj
  • zh
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 TVM@Alibaba AI Labs

    Cooperative Fetching lets threads in the same thread block cooperatively fetch dependent data out_channel WwWly, pm Bly zx) https://docstvm ai/ PVR TOPI Alibaba ALLabs 阿里巴巴人工智能实验室 和 | (Work group) 名 | | | Apady+m in_channel x+p -一一 人 下| [lm 加| ilw |太 5| | 各 Eee actor
    0 码力 | 12 页 | 1.94 MB | 6 月前
    3
  • pdf文档 Trends Artificial Intelligence

    performance since launch – adjusting, expanding and fine-tuning natural language understanding capabilities, ensuring answers and insights remain timely and relevant. 2 billion client interactions is facilitate scribe-like capabilities in real time, [have] great potential to reduce documentation burden, enhance physician-patient encounters, and augment clinicians’ capabilities. The technology leverages (TPMG) enabled ambient AI technology for 10,000 physicians and staff to augment their clinical capabilities across diverse settings and specialties. - New England Journal of Medicine Catalyst Research
    0 码力 | 340 页 | 12.14 MB | 5 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    models here. 8 A practical guide to building agents Defining tools Tools extend your agent’s capabilities by using APIs from underlying applications or systems. For legacy systems without APIs, agents keeping complexity manageable and simplifying evaluation and maintenance. Each new tool expands its capabilities without prematurely forcing you to orchestrate multiple agents. Tools Guardrails Hooks Instructions to consider creating multiple agents Our general recommendation is to maximize a single agent’s capabilities first. More agents can provide intuitive separation of concepts, but can introduce additional
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    on a few factors, including the complexity of the task, the quality of the examples, and the capabilities of the generative AI (gen AI) model you are using. As a general rule of thumb, you should use serves a slightly different primary purpose: • System prompt: Defines the model’s fundamental capabilities and overarching purpose. • Contextual prompt: Provides immediate, task-specific information to of Thought (CoT) Chain of Thought (CoT) 9 prompting is a technique for improving the reasoning capabilities of LLMs by generating intermediate reasoning steps. This helps the LLM generate more accurate
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 TVM Meetup Nov. 16th - Linaro

    mlplatform.org/ ● Git and review servers ● Forums and issue tracker ● Public mailing lists and IRC channel ● Internal Jira project restricted to Linaro members ● Three sub-projects: ○ Arm Compute Library
    0 码力 | 7 页 | 1.23 MB | 6 月前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    around three teams. Our Research Team advances the foundations of AI, developing new models and capabilities. Our Applied Team turns those models into products, like ChatGPT Enterprise and our API. And this specific job was recommended to them. Indeed uses the data analysis and natural language capabilities of GPT-4o mini to shape these ‘why’ statements in their emails and messages to jobseekers. Using
    0 码力 | 25 页 | 9.48 MB | 6 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    an LLM tends to improve as the number of parameters increases, allowing it to exhibit emergent capabilities across various tasks (Wei et al., 2022). However, the improvement comes at the cost of larger English tokens. Therefore, we acknowledge that DeepSeek-V2 still has a slight gap in basic English capabilities with LLaMA3 70B. However, even with much fewer training tokens and activated parameters, DeepSeek-V2 Our observation underscores the critical need for sufficient data to equip an LLM with desired capabilities. Moreover, the quality of SFT data is also crucial, especially for tasks involving writing or
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
共 7 条
  • 1
前往
页
相关搜索词
TVMAlibabaAILabsTrendsArtificialIntelligenceOpenAIpracticalguidetobuildingagentsGooglePromptEngineeringv7MeetupNov16thLinarointheEnterpriseDeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModel
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩