积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(7)人工智能(7)

语言

全部英语(4)中文(简体)(2)中文(简体)(1)

格式

全部PDF文档 PDF(7)
 
本次搜索耗时 0.032 秒,为您找到相关结果约 7 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • 中文(简体)
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Trends Artificial Intelligence

    entrants, monetization may lag build-out by quarters or even years. And then there’s the supply chain. Power availability is becoming more of a gating factor. Transformers, substations, turbines, GPUs Landing AI; Multi-Purpose Robotics = Figure AI; Autonomous Scientific Research = IBM’s RoboRXN; Supply Chain Optimization = o9 Solutions; Cybersecurity & Threat Detection = Vectra AI; Personalized Education Development Precision Manufacturing Multi-Purpose Robotics Autonomous Scientific Research Supply Chain Optimization Cybersecurity & Threat Detection Personalized Education Autonomous Finance
    0 码力 | 340 页 | 12.14 MB | 5 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    prompting 19 Role prompting 21 Contextual prompting 23 Table of contents Step-back prompting 25 Chain of Thought (CoT) 29 Self-consistency 32 Tree of Thoughts (ToT) 36 ReAct (reason & act) 37 Automatic techniques you can increase the accuracy of your prompts. Prompt Engineering February 2025 29 Chain of Thought (CoT) Chain of Thought (CoT) 9 prompting is a technique for improving the reasoning capabilities more complex tasks that require reasoning before responding as it’s a challenge with a zero-shot chain of thought. CoT has a lot of advantages. First of all, it’s low-effort while being very effective
    0 码力 | 68 页 | 6.50 MB | 7 月前
    3
  • pdf文档 DeepSeek从入门到精通(20250204)

    4o) 链式推理(慢速思考模型,如OpenAI o1) 性能表现 响应速度快,算力成本低 慢速思考,算力成本高 运算原理 基于概率预测,通过大量数据训练来快速预测可能 的答案 基于链式思维(Chain-of-Thought),逐步推理 问题的每个步骤来得到答案 决策能力 依赖预设算法和规则进行决策 能够自主分析情况,实时做出决策 创造力 限于模式识别和优化,缺乏真正的创新能力 能够生成新的创意和解决方案,具备创新能力 4. 使用“跨域应用”提示探索新的应用场景 深度融合:整合知识与创意的提示语链优化策略 • 逻辑链(Logic Chain):确保推理的严密性和论证的连贯性 • 知识链(Knowledge Chain):激活和应用相关领域知识 • 创意链(Creativity Chain):促进创新思维和独特见解 三链融合模型 逻辑链优化策略 知识链优化策略 • 应用形式逻辑原理 • 构建论证结构图
    0 码力 | 104 页 | 5.37 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    4o) 链式推理(慢速思考模型,如OpenAI o1) 性能表现 响应速度快,算力成本低 慢速思考,算力成本高 运算原理 基于概率预测,通过大量数据训练来快速预测可能 的答案 基于链式思维(Chain-of-Thought),逐步推理 问题的每个步骤来得到答案 决策能力 依赖预设算法和规则进行决策 能够自主分析情况,实时做出决策 创造力 限于模式识别和优化,缺乏真正的创新能力 能够生成新的创意和解决方案,具备创新能力 4. 使用“跨域应用”提示探索新的应用场景 深度融合:整合知识与创意的提示语链优化策略 • 逻辑链(Logic Chain):确保推理的严密性和论证的连贯性 • 知识链(Knowledge Chain):激活和应用相关领域知识 • 创意链(Creativity Chain):促进创新思维和独特见解 三链融合模型 逻辑链优化策略 知识链优化策略 • 应用形式逻辑原理 • 构建论证结构图
    0 码力 | 103 页 | 5.40 MB | 9 月前
    3
  • pdf文档 DeepSeek图解10页PDF

    DeepSeek-R1 核心贡献:首次验证了通过纯强化学习也能大幅提升大模 型推理能力,开源纯强化学习推理模型 DeepSeek-R1-Zero R1-Zero 能生成高质量的推理数据,包括大量长链式思维(Chain-of-Thought, CoT)示例,用于支持后续的 SFT 阶段,如图7所示。更加详细介绍参考3.2节。 3.1.2 核心创新 2:通用强化学习 第一阶段 R1-Zero 虽然展现出惊人的推理能力提升,但是也出现了回复时
    0 码力 | 11 页 | 2.64 MB | 8 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    Chung, A. Chowdhery, Q. V. Le, E. H. Chi, D. Zhou, et al. Challenging big-bench tasks and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022. A. Vaswani, N. Shazeer, N. Parmar
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    rule-based approaches fall short. Consider the example of payment fraud analysis. A traditional rules engine works like a checklist, flagging transactions based on preset criteria. In contrast, an LLM evaluating context, considering subtle patterns, and identifying suspicious activity even when clear-cut rules aren’t violated. This nuanced reasoning capability is exactly what enables agents to manage complex decisions, for example refund approval 
 in customer service workflows. 02 Difficult-to-maintain rules: Systems that have become unwieldy due to extensive and intricate rulesets, making updates costly
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
共 7 条
  • 1
前往
页
相关搜索词
TrendsArtificialIntelligenceGooglePromptEngineeringv7DeepSeek入门精通20250204清华华大大学清华大学图解10PDFV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelOpenAIpracticalguidetobuildingagents
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩