DeepSeek图解10页PDFGroup)训练的模型在本质上存在一些重要区别。主要区别之一,大模型更 加通用,这是因为它们基于大量多样化的数据集进行训练,涵盖了不同领域 和任务的数据。这种广泛的学习使得大模型具备了较强的知识迁移能力和 多任务处理能力,从而展现出“无所不知、无所不晓”的特性。相比之下, 我们基于单一数据集训练的模型通常具有较强的针对性,但其知识范围仅 限于该数据集的领域或问题。因此,这类模型的应用范围较为局限,通常只0 码力 | 11 页 | 2.64 MB | 8 月前3
清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单仅在 长文本处理、代码生成、数学推理等任务中表现出色,还为大模型的轻量化和实际应用提供了有力支持。 模型蒸馏技术 DeepSeek采用模型蒸馏技术,通过将知识从大型复杂模型 (教师模型)迁移到小型高效模型(学生模型),实现性能和 效率的双重优化。DeepSeek选择了多个开源模型作为蒸馏的 目标模型,包括Qwen 系列和Llama 系列 架构创新 通过将模型划分为多个专家模块,实0 码力 | 85 页 | 8.31 MB | 8 月前3
DeepSeek从入门到精通(20250204)找出输入空间之间的共同特征 选择性投射 从输入空间选择相关元素进行融合 涌现结构构建 在融合空间中创造新的、创新结构 知识转移技术(KTT):跨域智慧应用 �KTT的理论基础: KTT基于认知科学中的迁移学习理论和组织学习理论。 提出了以下关键步骤: �KTT实施步骤: 1. 定义问题:明确目标领域需要解决的问题或创新点 2. 寻找源域:搜索可能包含相关知识或方法的其他领域 3. 知识提取:从源域提取关键的知识、技能或方法0 码力 | 104 页 | 5.37 MB | 8 月前3
清华大学 DeepSeek 从入门到精通找出输入空间之间的共同特征 选择性投射 从输入空间选择相关元素进行融合 涌现结构构建 在融合空间中创造新的、创新结构 知识转移技术(KTT):跨域智慧应用 �KTT的理论基础: KTT基于认知科学中的迁移学习理论和组织学习理论。 提出了以下关键步骤: �KTT实施步骤: 1. 定义问题:明确目标领域需要解决的问题或创新点 2. 寻找源域:搜索可能包含相关知识或方法的其他领域 3. 知识提取:从源域提取关键的知识、技能或方法0 码力 | 103 页 | 5.40 MB | 8 月前3
共 4 条
- 1













