清华大学 普通人如何抓住DeepSeek红利如何提问?让AI一次性生成你想要的东西 学会问问题和挑选答案的能力时代 AI生成循环边界:突破框架 融合百家 AI:与人工智能中的学习 模型和认知结构紧密相关, 反映了其受限于现有算法 和数据。 认知:与哲学、认知科学 中的认知框架和自指性理 论相连,探讨了AI在生成 过程中如何受限于其既有 的认知结构。 循环:强调了AI生成内容 时容易陷入语义和逻辑上 的循环,无法跳出既定的 模式和规则。 边界:与康德的认识论和 向创新化。 智能体知识循环边界的研究 智能体在长时间对话中常表现出“知识循环边界”,即生成内容 重复或局限于特定模式的现象,源于训练数据、算法模型及预设 规则的限制。这一现象与逻辑学中的自指问题(如罗素悖论、哥 德尔定理)相关。 研究通过实验分析问题类型(全收敛、半收敛、非收敛)和对话 次数(50次、100次、150次)对生成内容相似性与创新性的影响, 建立了测量AI触及知识循环边界的方式。 AI的内容生成有一定的边界效应 AI的内容生成有一定的边界效应 研究将智能体知识循环边界操作化为生成内容的差异值,衡量标准为生成文本的平均相似度与重复率的加权值。 相似度计算 采用余弦相似度算法,将文本转化为词频向量,计算向量点积 与模长乘积的比值,评估文本间的相似性,取值范围为[-1, 1], 值越接近1表示相似性越高。该方法广泛应用于信息检索和自 然语言处理领域,可有效评估文本内容的相似程度。 重复率计算 使用n-gra0 码力 | 65 页 | 4.47 MB | 8 月前3
DeepSeek从入门到精通(20250204)提示语元素协同效应理论的核心观点包括: ▪ 互补增强:某些元素组合可以互相弥补不足,产生1+1>2的效果。 ▪ 级联激活:一个元素的激活可能引发一系列相关元素的连锁反应,形成 一个自我强化的正反馈循环。 ▪ 冲突调和:看似矛盾的元素组合可能产生意想不到的积极效果。 ▪ 涌现属性:某些元素组合可能产生单个元素所不具备的新特性。 目标 主要元素组合 次要元素组合 组合效果 提高输出准确性 主题元素 2023国家自然科学基金青年项目“面向人工智能生成内 容的风险识别与治理策略研究” • 2023国家资助博士后研究人员计划B档“AIGC意识形态 安全评估” 创新的火花:如何设计出独具匠心的提示语? 抽象—具体循环法:在不同抽象层次间灵活切换 运用类比与隐喻:增强创意表达 ▪ 分解与重组:先将复杂问题分解为简单组件,再设 计其交互方式。 ▪ 互动规则设定:在提示语中定义组件互动规则。 ▪ 整体行为观察:设计机制来观察和解释从互动中涌 境中抽离 • Generalize(泛化):寻找普适原则 • Extrapolate(推演):将原理应用到新领域 �实战技巧:操作方法 1. 使用“评估矩阵”提示进行系统性筛选 2. 应用“优化循环”提示迭代改进想法 3. 设计“创意组合”提示融合不同概念 4. 使用“叙事架构”提示创建统一的故事线 5. 应用“综合提炼”提示形成最终观点 �实战技巧:操作方法 1. 使用“随机输入”提示引入跨领域元素0 码力 | 104 页 | 5.37 MB | 8 月前3
清华大学 DeepSeek 从入门到精通提示语元素协同效应理论的核心观点包括: ▪ 互补增强:某些元素组合可以互相弥补不足,产生1+1>2的效果。 ▪ 级联激活:一个元素的激活可能引发一系列相关元素的连锁反应,形成 一个自我强化的正反馈循环。 ▪ 冲突调和:看似矛盾的元素组合可能产生意想不到的积极效果。 ▪ 涌现属性:某些元素组合可能产生单个元素所不具备的新特性。 目标 主要元素组合 次要元素组合 组合效果 提高输出准确性 主题元素 2023国家自然科学基金青年项目“面向人工智能生成内 容的风险识别与治理策略研究” • 2023国家资助博士后研究人员计划B档“AIGC意识形态 安全评估” 创新的火花:如何设计出独具匠心的提示语? 抽象—具体循环法:在不同抽象层次间灵活切换 运用类比与隐喻:增强创意表达 ▪ 分解与重组:先将复杂问题分解为简单组件,再设 计其交互方式。 ▪ 互动规则设定:在提示语中定义组件互动规则。 ▪ 整体行为观察:设计机制来观察和解释从互动中涌 境中抽离 • Generalize(泛化):寻找普适原则 • Extrapolate(推演):将原理应用到新领域 �实战技巧:操作方法 1. 使用“评估矩阵”提示进行系统性筛选 2. 应用“优化循环”提示迭代改进想法 3. 设计“创意组合”提示融合不同概念 4. 使用“叙事架构”提示创建统一的故事线 5. 应用“综合提炼”提示形成最终观点 �实战技巧:操作方法 1. 使用“随机输入”提示引入跨领域元素0 码力 | 103 页 | 5.40 MB | 9 月前3
DeepSeek图解10页PDF3. 前 馈神经网络(FFN):非线性变换模块,提升模型的表达能力。4. 位置编码 (Positional Encoding):在没有循环结构的情况下,帮助模型理解单词的顺 序信息。 Transformer 结构的优势 1. 高效的并行计算:摒弃循环结构,使计算速度大幅提升。 2. 更好的上下文理解:注意力机制可捕捉长文本中的远程依赖关系。 3. 良好的可扩展性:可适配更大规模模型训练,增强0 码力 | 11 页 | 2.64 MB | 8 月前3
开源中国 2023 大模型(LLM)技术报告的智能化发展提 供了新的方向,使 LLM 能够更加接近于人类智能。 AutoGPT 就是一个典型的 LLM Agent。在给定 AutoGPT 一个自然 语言目标后,它会尝试将其分解为多个子任务,并在自动循环中使用 互联网和其他工具来实现该目标。它使用的是 OpenAI 的 GPT-4 或 GPT-3.5 API,是首个使用 GPT-4 执行自主任务的应用程序实例。 AutoGPT 最大的特点在于能根据任务指令自主分析和执行,当收到0 码力 | 32 页 | 13.09 MB | 1 年前3
【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502读 22 DeepSeek出现之前的十大预判 之九 开源效果追赶上闭源 技术开放,吸引广大开发人员和用户使用 很多公司参与开源,帮助改进产品,众人拾柴火焰高, 反哺开源产品,形成正循环政企、创业者必读 DeepSeek出现之前的十大预判 之十 中美差距快速缩小 美国预训练堆算力的路线不可持续,有待发现新范式“换道超车” 软件和算法差距并不大,主要差距在工程、硬件等方面0 码力 | 76 页 | 5.02 MB | 6 月前3
共 6 条
- 1













