积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(9)人工智能(9)

语言

全部中文(简体)(6)中文(简体)(2)英语(1)

格式

全部PDF文档 PDF(8)TXT文档 TXT(1)
 
本次搜索耗时 0.021 秒,为您找到相关结果约 9 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • TXT文档 TXT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    提示词 测试结果受到数据样本、测试环境、AI抽卡、提示词模板等因素影响,仅供参考,无法作为决策制定、质量评估或产品验证的最终依据。 数据分析 Claude 3.5 sonnet 提供数据分析程序代码, 能够提取大部分特征并 对其与生存率的关联进 行分析,但最终没有形 成明确的结论。 Kimi k1.5 能够精准分析关键 指标生存率,但对 特征提取不完整, 仅能识别较为浅层 硬件配置和优化策略,DeepSeek可以在本地环境中高效运行,为用户提供强大的AI支持。 DeepSeek 在端侧部署中展现出较强的适应性和灵活性。 模型轻量化 DeepSeek通过蒸馏技术优化小模 型(1.5B/7B/8B/14B/32B/70B 参数规模),使其在本地部署中表 现出色,适合存储和计算资源有限 的端侧设备。 实时性 在端侧设备上,DeepSeek 能够满足实时性要求,例如 本 降 至 行 业 1/10,打破了传统AI巨头依 赖“规模法则”的垄断局面。 其 F P 8 混 合 精 度 训 练 和 开 源 原 生 F P 8 权 重 , 显 著 降 低 了 中 小 团 队 的 技 术 门 槛 , 推 动 AI技术民主化。 重塑定价逻辑 DeepSeekV3模型以557.6 万 美 元 的 训 练 成 本 , 实 现 了 与 G P T - 4 o 相
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 普通人学AI指南

    模型,用于生成高质量的图像。 2.2.5 DALLE3 闭源:由 OpenAI 开发,是一个闭源的图像生成模型,可以根据文字描述生成 相应的图像。 2.2.6 Midjourney 闭源:由一个小团队开发的闭源 AI,专注于生成创意和艺术图像。 2.3 AI 视频工具 Figure 5: AI 视频工具 2.3.1 Sora (OpenAI 公司) 内测:由 OpenAI 开发,目前处于内部测试阶段的项目。 真人转油画:能将真人视频转换成油画风格的 AI 工具。 2.3.9 EBSynth 开源:一个开源的视频处理工具,用于将艺术风格应用到视频帧中。 2.4 AI 编程工具 2.4.1 DEvv 程序员的新一代 AI 搜索引擎,专为编程和技术问题检索设计。 2.4.2 JetBrains AI AI 编程开发助手,集成在 JetBrains 系列开发工具中,提升编码效率。 9 Figure Install 安装 ollama,安装步骤非常简 单。 3.1.2 步骤 2:安装 Llama 下载 Llama3,打开新的终端/命令行窗口,执行以下命令: ollama run llama3 程序会自动下载 Llama3 的模型文件,默认是 8B,也就 80 亿参数版本,个 人电脑完全可以运行。等待安装完成,如图 12 所示。 14 Figure 12: Ollama 里下载 Llama3
    0 码力 | 42 页 | 8.39 MB | 8 月前
    3
  • pdf文档 【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502

    AI不仅是技术革新,更是思维方式和社会结构的变革 国家 产业 个人 企业政企、创业者必读 人工智能发展历程(一)  从早期基于规则的专家系统,走向基于学习训练的感知型AI  从基于小参数模型的感知型AI,走向基于大参数模型的认知型AI  从擅长理解的认知型AI,发展到擅长文字生成的生成式AI  从语言生成式AI,发展到可理解和生成声音、图片、视频的多模态AI  从生成式AI,发展到推理型AI Deepmind的Alpha系列产品是这一趋势的最佳诠释 16政企、创业者必读 DeepSeek出现之前的十大预判 之四 模型越做越小 17  大模型进入「轻量化」时代,上车上终端,蒸馏小模型  先做得更大,然后探索能做多小政企、创业者必读 DeepSeek出现之前的十大预判 之五 知识的质量和密度决定大模型能力  高质量数据、合成数据使模型知识密度的快速增长  大模型能以更少的参数量达到更高的性能 训练成本降低,堆显卡模式受质疑,探索新思路,算法优化空间大  无需训练自己的基座模型,直接部署在DeepSeek上,不用重复发明轮子  公开蒸馏方法,帮助其他模型提升能力,实现了模型制造模型,犹如工业母机  小模型可部署在企业内电脑或一体机上,使用成本降低,形成分布式推理网络  技术门槛降低, 可标准化、SaaS化部署,下载就能用 DeepSeek颠覆式创新——成本暴跌 35政企、创业者必读 惠及全球人民,科技平权,技术平民化
    0 码力 | 76 页 | 5.02 MB | 5 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    该翻译所对应的古诗文是: OPTIONS - 春风骋巧如翦刀 - 剪裁无巧似春风 - 风吹怨恨快如刀 - 春风欲擅秋风巧 Table 17 | An example of CCPM. 38 PROMPT Q: 某 小 学 在“献 爱 心–为 汶 川 地 震 区 捐 款”活 动 中 , 六 年 级 五 个 班 共 捐 款8000元 , 其 中 一 班 捐 款1500元 , 二 班 比 一 班 多 捐 款200元 , 1700-1600=3200元,而题目说四班与五班捐款数之比是3:5,则四班捐款 了3200/(3+5)*3=1200元。所以答案是:1200。 Q: 小俊在东西大道上跑步,若规定向东为正。他先向东跑了800米,然后又跑 了一段之后,他位于出发点西边100米处,小俊第二段跑了多少米? A: 小俊第二段跑完后位于出发点西边,所以第二段应该是向西跑,第二 段跑的长度-第一段跑的长度=100,第二段跑了100+800=900米。所以答案
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 清华大学第二弹:DeepSeek赋能职场

    (风格)” 想 要的写作风格, 如严肃的、有趣 的、创新性表达、 学术性…… "T"代表“Tone (语调)” 幽 默的?情绪化? 有威胁性? "A"代表 "Audience", 受众是谁。 小 白用户?专业人 群?未成年群体? 女性群体? DeepSeek R1提示语技巧(开放性) • 不需要角色设定 • 不需要思维链提示 • 不需要结构化提示词 • 不需要给示例 • 不需要做太多解释
    0 码力 | 35 页 | 9.78 MB | 8 月前
    3
  • text文档 00 Deepseek官方提示词

    角色扮演(情景续写):提供一个场景,让模型模拟该场景下的任务对话 USER 假设诸葛亮死后在地府遇到了刘备,请模拟两个人展开一段对话。 5. 结构化输出 :将内容转化为 Json,来方便后续程序处理 SYSTEM 用户将提供给你一段新闻内容,请你分析新闻内容,并提取其中的关键信息,以 JSON 的形式输出,输出的 JSON 需遵守以下的格式: { "entiry": <新闻实体>
    0 码力 | 4 页 | 7.93 KB | 8 月前
    3
  • pdf文档 开源中国 2023 大模型(LLM)技术报告

    语言目标后,它会尝试将其分解为多个子任务,并在自动循环中使用 互联网和其他工具来实现该目标。它使用的是 OpenAI 的 GPT-4 或 GPT-3.5 API,是首个使用 GPT-4 执行自主任务的应用程序实例。 AutoGPT 最大的特点在于能根据任务指令自主分析和执行,当收到 一个需求或任务时,它会开始分析这个问题,并且给出执行目标和具 体任务,然后开始执行。 图源:https://blog
    0 码力 | 32 页 | 13.09 MB | 1 年前
    3
  • pdf文档 DeepSeek从入门到精通(20250204)

    部分都是相对独立但与整体目标相关的。” 2. 优先级提示: “对上述分解的任务进行优先级排序,考虑它们对总 体目标的重要性和逻辑顺序。” 3. 细化提示:“选择优先级最高的子任务,将其进一步细化为2—3个具 体的行动项或小目标。” 4. 连接提示:“分析各个子任务之间的关系,确定它们如何相互支持和 影响,以及如何共同推进总体目标的实现。” 5. 时序提示:“为每个子任务制定一个粗略的时间表,考虑它们的依赖 关系和完成所需的相对时间。”
    0 码力 | 104 页 | 5.37 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    部分都是相对独立但与整体目标相关的。” 2. 优先级提示: “对上述分解的任务进行优先级排序,考虑它们对总 体目标的重要性和逻辑顺序。” 3. 细化提示:“选择优先级最高的子任务,将其进一步细化为2—3个具 体的行动项或小目标。” 4. 连接提示:“分析各个子任务之间的关系,确定它们如何相互支持和 影响,以及如何共同推进总体目标的实现。” 5. 时序提示:“为每个子任务制定一个粗略的时间表,考虑它们的依赖 关系和完成所需的相对时间。”
    0 码力 | 103 页 | 5.40 MB | 8 月前
    3
共 9 条
  • 1
前往
页
相关搜索词
清华大学DeepSeekDeepResearch科研普通通人普通人AI指南周鸿祎清华演讲我们带来创业机会360202502V2StrongEconomicalandEfficientMixtureofExpertsLanguageModel华大大学第二赋能职场00Deepseek官方提示开源中国2023模型LLM技术报告入门精通20250204
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩