积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(8)Swift(8)

语言

全部中文(简体)(7)中文(繁体)(1)

格式

全部PDF文档 PDF(8)
 
本次搜索耗时 0.078 秒,为您找到相关结果约 8 个.
  • 全部
  • 后端开发
  • Swift
  • 全部
  • 中文(简体)
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Hello 算法 1.2.0 简体中文 Swift 版

    ,直至所有扑克牌都有序。 图 1‑2 扑克排序步骤 上述整理扑克牌的方法本质上是“插入排序”算法,它在处理小型数据集时非常高效。许多编程语言的排序 库函数中都有插入排序的身影。 例三:货币找零。假设我们在超市购买了 69 元的商品,给了收银员 100 元,则收银员需要找我们 31 元。他 会很自然地完成如图 1‑3 所示的思考。 1. 可选项是比 31 元面值更小的货币,包括 1 元、5 从剩余可选项中拿出最大的 1 元,剩余 1 − 1 = 0 元。 5. 完成找零,方案为 20 + 10 + 1 = 31 元。 第 1 章 初识算法 www.hello‑algo.com 13 图 1‑3 货币找零过程 在以上步骤中,我们每一步都采取当前看来最好的选择(尽可能用大面额的货币),最终得到了可行的找零方 案。从数据结构与算法的角度看,这种方法本质上是“贪心”算法。 小到烹饪 ‧ 算法通常可以基于不同的数据结构实现,但执行效率可能相差很大,选择合适的数据结构是关键。 图 1‑4 数据结构与算法的关系 数据结构与算法犹如图 1‑5 所示的拼装积木。一套积木,除了包含许多零件之外,还附有详细的组装说明书。 我们按照说明书一步步操作,就能组装出精美的积木模型。 第 1 章 初识算法 www.hello‑algo.com 15 图 1‑5 拼装积木 两者的详细对应关系如表
    0 码力 | 379 页 | 18.48 MB | 10 月前
    3
  • pdf文档 Hello 算法 1.1.0 Swift版

    ,直至所有扑克牌都有序。 图 1‑2 扑克排序步骤 上述整理扑克牌的方法本质上是“插入排序”算法,它在处理小型数据集时非常高效。许多编程语言的排序 库函数中都有插入排序的身影。 例三:货币找零。假设我们在超市购买了 69 元的商品,给了收银员 100 元,则收银员需要找我们 31 元。他 会很自然地完成如图 1‑3 所示的思考。 1. 可选项是比 31 元面值更小的货币,包括 1 元、5 从剩余可选项中拿出最大的 1 元,剩余 1 − 1 = 0 元。 5. 完成找零,方案为 20 + 10 + 1 = 31 元。 第 1 章 初识算法 hello‑algo.com 13 图 1‑3 货币找零过程 在以上步骤中,我们每一步都采取当前看来最好的选择(尽可能用大面额的货币),最终得到了可行的找零方 案。从数据结构与算法的角度看,这种方法本质上是“贪心”算法。 小到烹饪一道 ‧ 算法通常可以基于不同的数据结构实现,但执行效率可能相差很大,选择合适的数据结构是关键。 图 1‑4 数据结构与算法的关系 数据结构与算法犹如图 1‑5 所示的拼装积木。一套积木,除了包含许多零件之外,还附有详细的组装说明书。 我们按照说明书一步步操作,就能组装出精美的积木模型。 第 1 章 初识算法 hello‑algo.com 15 图 1‑5 拼装积木 两者的详细对应关系如表 1‑1
    0 码力 | 379 页 | 18.47 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0 Swift版

    ,直至所有扑克牌都有序。 图 1‑2 扑克排序步骤 上述整理扑克牌的方法本质上是“插入排序”算法,它在处理小型数据集时非常高效。许多编程语言的排序 库函数中都有插入排序的身影。 例三:货币找零。假设我们在超市购买了 69 元的商品,给了收银员 100 元,则收银员需要找我们 31 元。他 会很自然地完成如图 1‑3 所示的思考。 1. 可选项是比 31 元面值更小的货币,包括 1 元、5 从剩余可选项中拿出最大的 1 元,剩余 1 − 1 = 0 元。 5. 完成找零,方案为 20 + 10 + 1 = 31 元。 第 1 章 初识算法 hello‑algo.com 13 图 1‑3 货币找零过程 在以上步骤中,我们每一步都采取当前看来最好的选择(尽可能用大面额的货币),最终得到了可行的找零方 案。从数据结构与算法的角度看,这种方法本质上是“贪心”算法。 小到烹饪一道 ‧ 算法通常可以基于不同的数据结构实现,但执行效率可能相差很大,选择合适的数据结构是关键。 图 1‑4 数据结构与算法的关系 数据结构与算法犹如图 1‑5 所示的拼装积木。一套积木,除了包含许多零件之外,还附有详细的组装说明书。 我们按照说明书一步步操作,就能组装出精美的积木模型。 第 1 章 初识算法 hello‑algo.com 15 图 1‑5 拼装积木 两者的详细对应关系如表 1‑1
    0 码力 | 378 页 | 17.59 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b5 Swift版

    直至所有扑克牌都有序。 图 1‑2 扑克排序步骤 上述整理扑克牌的方法本质上是“插入排序”算法,它在处理小型数据集时非常高效。许多编程语言的排序 库函数中都存在插入排序的身影。 例三:货币找零。假设我们在超市购买了 69 元的商品,给了收银员 100 元,则收银员需要找我们 31 元。他 会很自然地完成如图 1‑3 所示的思考。 1. 可选项是比 31 元面值更小的货币,包括 1 元、5 从剩余可选项中拿出最大的 1 元,剩余 1 − 1 = 0 元。 5. 完成找零,方案为 20 + 10 + 1 = 31 元。 第 1 章 初识算法 hello‑algo.com 12 图 1‑3 货币找零过程 在以上步骤中,我们每一步都采取当前看来最好的选择(尽可能用大面额的货币),最终得到了可行的找零方 案。从数据结构与算法的角度看,这种方法本质上是“贪心”算法。 小到烹饪一道 算法通常可以基于不同的数据结构进行实现,并往往有对应最优的数据结构,但最终执行效率可能相 差很大。 图 1‑4 数据结构与算法的关系 数据结构与算法犹如图 1‑5 所示的拼装积木。一套积木,除了包含许多零件之外,还附有详细的组装说明书。 我们按照说明书一步步操作,就能组装出精美的积木模型。 第 1 章 初识算法 hello‑algo.com 14 图 1‑5 拼装积木 两者的详细对应关系如表 1‑1
    0 码力 | 376 页 | 30.70 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b1 Swift版

    ,都能够解决同一问题,现在需要对比两个算法之间的效率。我们能够想到 的最直接的方式,就是找一台计算机,把两个算法都完整跑一遍,并监控记录运行时间和内存占用情况。这种 评估方式能够反映真实情况,但是也存在很大的硬伤。 难以排除测试环境的干扰因素。硬件配置会影响到算法的性能表现。例如,在某台计算机中,算法 A 比算法 B 运行时间更短;但换到另一台配置不同的计算机中,可能会得到相反的测试结果。这意味着我们需要在各种机 器上展开测试,而这是不现实的。 器上展开测试,而这是不现实的。 展开完整测试非常耗费资源。随着输入数据量的大小变化,算法会呈现出不同的效率表现。比如,有可能输入 数据量较小时,算法 A 运行时间短于算法 B ,而在输入数据量较大时,测试结果截然相反。因此,若想要达 到具有说服力的对比结果,那么需要输入各种体量数据,这样的测试需要占用大量计算资源。 理论估算 既然实际测试具有很大的局限性,那么我们是否可以仅通过一些计算,就获知算法的效率水平呢?答案 复杂度分析评估的是算法运行效率随着输入数据量增多时的增长趋势。这句话有些拗口,我们可以将其分为三 个重点来理解: 2. 复杂度分析 hello‑algo.com 13 ‧“算法运行效率”可分为“运行时间”和“占用空间”,进而可将复杂度分为「时间复杂度 Time Complexity」 和「空间复杂度 Space Complexity」。 ‧“随着输入数据量增多时”代表复杂度与输入数据量有关,
    0 码力 | 190 页 | 14.71 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b2 Swift版

    ,都能够解决同一问题,现在需要对比两个算法之间的效率。我们能够想到 的最直接的方式,就是找一台计算机,把两个算法都完整跑一遍,并监控记录运行时间和内存占用情况。这种 评估方式能够反映真实情况,但是也存在很大的硬伤。 难以排除测试环境的干扰因素。硬件配置会影响到算法的性能表现。例如,在某台计算机中,算法 A 比算法 B 运行时间更短;但换到另一台配置不同的计算机中,可能会得到相反的测试结果。这意味着我们需要在各种机 器上展开测试,而这是不现实的。 器上展开测试,而这是不现实的。 展开完整测试非常耗费资源。随着输入数据量的大小变化,算法会呈现出不同的效率表现。比如,有可能输入 数据量较小时,算法 A 运行时间短于算法 B ,而在输入数据量较大时,测试结果截然相反。因此,若想要达 到具有说服力的对比结果,那么需要输入各种体量数据,这样的测试需要占用大量计算资源。 理论估算 既然实际测试具有很大的局限性,那么我们是否可以仅通过一些计算,就获知算法的效率水平呢?答案 复杂度分析评估的是算法运行效率随着输入数据量增多时的增长趋势。这句话有些拗口,我们可以将其分为三 个重点来理解: 2. 复杂度分析 hello‑algo.com 13 ‧“算法运行效率”可分为“运行时间”和“占用空间”,进而可将复杂度分为「时间复杂度 Time Complexity」 和「空间复杂度 Space Complexity」。 ‧“随着输入数据量增多时”代表复杂度与输入数据量有关,
    0 码力 | 199 页 | 15.72 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.2.0 繁体中文 Swift 版

    直至所有撲克牌都有序。 圖 1‑2 撲克排序步驟 上述整理撲克牌的方法本質上是“插入排序”演算法,它在處理小型資料集時非常高效。許多程式語言的排 序庫函式中都有插入排序的身影。 例三:貨幣找零。假設我們在超市購買了 69 元的商品,給了收銀員 100 元,則收銀員需要找我們 31 元。他 會很自然地完成如圖 1‑3 所示的思考。 1. 可選項是比 31 元面值更小的貨幣,包括 1 元、5 從剩餘可選項中拿出最大的 1 元,剩餘 1 − 1 = 0 元。 5. 完成找零,方案為 20 + 10 + 1 = 31 元。 第 1 章 初識演算法 www.hello‑algo.com 13 圖 1‑3 貨幣找零過程 在以上步驟中,我們每一步都採取當前看來最好的選擇(儘可能用大面額的貨幣),最終得到了可行的找零方 案。從資料結構與演算法的角度看,這種方法本質上是“貪婪”演算法。 小到 演算法通常可以基於不同的資料結構實現,但執行效率可能相差很大,選擇合適的資料結構是關鍵。 圖 1‑4 資料結構與演算法的關係 資料結構與演算法猶如圖 1‑5 所示的拼裝積木。一套積木,除了包含許多零件之外,還附有詳細的組裝說明 書。我們按照說明書一步步操作,就能組裝出精美的積木模型。 第 1 章 初識演算法 www.hello‑algo.com 15 圖 1‑5 拼裝積木 兩者的詳細對應關係如表
    0 码力 | 379 页 | 18.79 MB | 10 月前
    3
  • pdf文档 如何打造一个让人愉快的框架 - 王巍

    链接到最终的可执行文 件中 在一些上了年头的第三 方库中可能还能见到 系统框架 .FRAMEWORK 什么是动态框架 (DYNAMIC FRAMEWORK) 存在于系统内部 已经链接好的 image 运行时通过 dyld 加载 不需要重新加载 直到 iOS 8,只有 Apple 制作 的框架才能使用动态方式 UNIVERSAL FRAMEWORK 以前的一些第三方框架也提 供 .framework
    0 码力 | 84 页 | 21.57 MB | 1 年前
    3
共 8 条
  • 1
前往
页
相关搜索词
Hello算法1.2简体中文简体中文Swift1.11.00b50b10b2繁体繁体中文如何打造一个愉快框架王巍
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩