积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(99)C++(99)Conan(49)

语言

全部英语(98)中文(简体)(1)

格式

全部PDF文档 PDF(98)PPT文档 PPT(1)
 
本次搜索耗时 0.019 秒,为您找到相关结果约 99 个.
  • 全部
  • 后端开发
  • C++
  • Conan
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 A Long Journey of Changing std::sort Implementation at Scale

    0 码力 | 182 页 | 7.65 MB | 6 月前
    3
  • pdf文档 Futures/Promises to Lazy Continuations: Evolving an Actor Library Based on Lessons Learned from Large-Scale

    Futures/Promises to Lazy Continuations Evolving an Actor Library Based on Lessons Learned from Large-Scale Deployments Benjamin Hindman @benh CppCon 2021prologue ● past life at UC Berkeley, Twitter, Mesosphere/D2iQ ● about a dozen mutexes! (mostly for interfacing with code not written w/ libprocess) ● massive scale (clusters of ~80k physical machines)chapters (1) motivating futures/promises + actors (2) libprocess
    0 码力 | 264 页 | 588.96 KB | 6 月前
    3
  • pdf文档 Changing Legacy Code: With Confidence

    int32_t alpha_scale = 0; const int32_t lat = (last_posn.lat + posn->lat) / 2; lon_scale(lat, &alpha_scale, NULL); const uint32_t delta_distance_sc = compute_dist(posn, &last_posn, &alpha_scale, NULL); const int32_t alpha_scale = 0; const int32_t lat = (last_posn.lat + posn->lat) / 2; lon_scale(lat, &alpha_scale, NULL); const uint32_t delta_distance_sc = compute_dist(posn, &last_posn, &alpha_scale, NULL); const int32_t alpha_scale = 0; const int32_t lat = (last_posn.lat + posn->lat) / 2; lon_scale(lat, &alpha_scale, NULL); const uint32_t delta_distance_sc = compute_dist(posn, &last_posn, &alpha_scale, NULL); const
    0 码力 | 114 页 | 982.54 KB | 6 月前
    3
  • pdf文档 GraphBLAS: Building a C++ Matrix API for Graph Algorithms

    About Us 2 Scott, Principal Engineer at CMU SEI Graph/ML/AI algorithms for large- and small- scale parallel systems. Working on GBTL, a linear algebra-based C++ library for graph analytics.[DISTRIBUTION pointers to custom operators void scale_2(void *out, const void *in) { *(int*)out = 2 * (*(int*)in); } GrB_UnaryOp my_scale_2; GrB_UnaryOp_new(&my_scale_2, scale_2, GrB_INT32, GrB_INT32); built-in types left out of the spec Function pointers (e.g. scale_2) then used in performance-critical inner loops: GrB_apply(C, ..., my_scale_2, A, desc); 57[DISTRIBUTION STATEMENT A] This material has
    0 码力 | 172 页 | 7.40 MB | 6 月前
    3
  • pdf文档 simd: How to Express Inherent Parallelism Efficiently Via Data-Parallel Types

    Point normalized() const { 5 using std::sqrt; 6 const auto scale = 1 / sqrt(x * x + y * y + z * z); 7 return {x * scale, y * scale, z * scale}; 8 } 9 }; Matthias Kretz CppCon ’23 52 GSI Helmholtz Center Point normalized() const { 5 using std::sqrt; 6 const auto scale 7 = 1 / sqrt(x*x + y*y + z*z); 8 return {x * scale, 9 y * scale, 10 z * scale}; 11 } 12 }; 1 void aos(const std::vector>& Point normalized() const { 5 using std::sqrt; 6 const auto scale 7 = 1 / sqrt(x*x + y*y + z*z); 8 return {x * scale, 9 y * scale, 10 z * scale}; 11 } 12 }; 1 void aos(const std::vector>&
    0 码力 | 160 页 | 8.82 MB | 6 月前
    3
  • pdf文档 A Physical Units Library for the Next C++

    errors hard to understand. 15using kilometer_base_unit = bu::make_scaled_unitscale<10, bu::static_rational<3>>>::type; using length_kilometer = kilometer_base_unit::unit_type; using org/z/G3qqn8) (Continued...) 16using kilometer_base_unit = bu::make_scaled_unitscale<10, bu::static_rational<3>>>::type; using length_kilometer = kilometer_base_unit::unit_type; using boost::units::list< boost::units::scaled_base_unitscale<10, boost::units::static_rational<3> > >, boost::units::list
    0 码力 | 172 页 | 6.17 MB | 6 月前
    3
  • pdf文档 Data Is All You Need for Fusion

    \ double *B, \ int LDB, \ double beta, \ double *C, \ int LDC)\ { int i,j,k; if (beta != 1.0) scale_c_k18(C,M,N,LDC,beta); if (alpha == 0.||K==0) return; int M4,N8=N&-8,K4; double *a_buffer = (double \ double *B, \ int LDB, \ double beta, \ double *C, \ int LDC)\ { int i,j,k; if (beta != 1.0) scale_c_k18(C,M,N,LDC,beta); if (alpha == 0.||K==0) return; int M4,N8=N&-8,K4; double *a_buffer = (double \ double *B, \ int LDB, \ double beta, \ double *C, \ int LDC)\ { int i,j,k; if (beta != 1.0) scale_c_k18(C,M,N,LDC,beta); if (alpha == 0.||K==0) return; int M4,N8=N&-8,K4; double *a_buffer = (double
    0 码力 | 151 页 | 9.90 MB | 6 月前
    3
  • pdf文档 Continuous Regression Testing for Safer and Faster Refactoring

    behavioral regressions How to use regression testing effectively Establishing a culture of safety at scale8 Aurora Innovation About Aurora Delivering the bene�ts of self- driving technology, safely, quickly productive and safely introduce frequent changes? Implement high-level tests and continuously run them at scale to cover real-world system behaviors with reasonable degree of con�dence.15 Aurora Innovation Developer input. Mismatches against the expected values indicate failure. Tests are dif�cult to maintain, scale, and automate. Testing for Regression Treats a released version of software as baseline. Mismatches
    0 码力 | 85 页 | 11.66 MB | 6 月前
    3
  • pdf文档 Design Patterns

    Functionality with CRTP 29 template< typename Derived > struct NumericalFunctions { void scale( double multiplicator ) { Derived& underlying = static_cast(*this); underlying Sensitivity s{ 1.2 }; s.scale( 2.0 ); std::println( std::cout, "s.getValue() = {}", s.getValue() ); }Adding Functionality with C++23 30 struct NumericalFunctions { void scale( this auto&& self, setValue( double v ) { value = v; } double value; }; int main() { Sensitivity s{ 1.2 }; s.scale( 2.0 ); std::println( std::cout, "s.getValue() = {}", s.getValue() ); } No template parameter
    0 码力 | 136 页 | 7.95 MB | 6 月前
    3
  • pdf文档 Rethinking Task Based Concurrency and Parallelism for Low Latency C++

    Albert EinsteinSo what is there to Rethink?Rethinking: Task Queues Problem #1 - Task Queues Do Not Scale Well: ● Contention: ○ Even the most meticulously designed lock-free queues experience a significant Task Queue Execute Task() Thread Thread PoolRethinking: Task Queues Summary: ● Queues do not scale well: ○ True even for the best lock free implementations ● Does not support prioritization: ○ Available Scalability: ○ Over 40x higher throughput than the fastest MPMC queue at scale ○ Over 100x higher throughput than the average MPMC queue at scale ○ Approximately 1/2N memory requirement (N = number of nodes) Alternative:
    0 码力 | 142 页 | 2.80 MB | 6 月前
    3
共 99 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 10
前往
页
相关搜索词
LongJourneyofChangingstdsortImplementationatScaleFromEagerFuturesPromisestoLazyContinuationsEvolvinganActorLibraryBasedonLessonsLearnedfromLargeDeploymentsLegacyCodeWithConfidenceGraphBLASBuildingC++MatrixAPIforGraphAlgorithmssimdHowExpressInherentParallelismEfficientlyViaDataParallelTypesPhysicalUnitstheNextIsAllYouNeedFusionContinuousRegressionTestingSaferandFasterRefactoringDesignPatternsRethinkingTaskConcurrencyLowLatency
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩