积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(23)C++(23)

语言

全部中文(简体)(22)中文(繁体)(1)

格式

全部PPT文档 PPT(12)PDF文档 PDF(11)
 
本次搜索耗时 0.080 秒,为您找到相关结果约 23 个.
  • 全部
  • 后端开发
  • C++
  • 全部
  • 中文(简体)
  • 中文(繁体)
  • 全部
  • PPT文档 PPT
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Hello 算法 1.1.0 C++ 版

    器上进行测试,统计平均效率,而这是不现实的。 另一方面,展开完整测试非常耗费资源。随着输入数据量的变化,算法会表现出不同的效率。例如,在输入 数据量较小时,算法 A 的运行时间比算法 B 短;而在输入数据量较大时,测试结果可能恰恰相反。因此,为 了得到有说服力的结论,我们需要测试各种规模的输入数据,而这需要耗费大量的计算资源。 2.1.2 理论估算 由于实际测试具有较大的局限性,因此我们可以考 为渐近复杂度分析(asymptotic complexity analysis),简称复杂度分析。 复杂度分析能够体现算法运行所需的时间和空间资源与输入数据大小之间的关系。它描述了随着输入数据大 小的增加,算法执行所需时间和空间的增长趋势。这个定义有些拗口,我们可以将其分为三个重点来理解。 ‧“时间和空间资源”分别对应时间复杂度(time complexity)和空间复杂度(space complexity)。 ‧“随 在算法中,重复执行某个任务是很常见的,它与复杂度分析息息相关。因此,在介绍时间复杂度和空间复杂 度之前,我们先来了解如何在程序中实现重复执行任务,即两种基本的程序控制结构:迭代、递归。 2.2.1 迭代 迭代(iteration)是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某段 代码,直到这个条件不再满足。 1. for 循环 for 循环是最常见的迭代形式之一,适合在预先知道迭代次数时使用。
    0 码力 | 379 页 | 18.47 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0 C++版

    器上进行测试,统计平均效率,而这是不现实的。 另一方面,展开完整测试非常耗费资源。随着输入数据量的变化,算法会表现出不同的效率。例如,在输入 数据量较小时,算法 A 的运行时间比算法 B 短;而在输入数据量较大时,测试结果可能恰恰相反。因此,为 了得到有说服力的结论,我们需要测试各种规模的输入数据,而这需要耗费大量的计算资源。 2.1.2 理论估算 由于实际测试具有较大的局限性,因此我们可以考 asymptotic complexity analysis」,简称「复杂度分析」。 复杂度分析能够体现算法运行所需的时间和空间资源与输入数据大小之间的关系。它描述了随着输入数据大 小的增加,算法执行所需时间和空间的增长趋势。这个定义有些拗口,我们可以将其分为三个重点来理解。 ‧“时间和空间资源”分别对应「时间复杂度 time complexity」和「空间复杂度 space complexity」。 ‧ 在算法中,重复执行某个任务是很常见的,它与复杂度分析息息相关。因此,在介绍时间复杂度和空间复杂 度之前,我们先来了解如何在程序中实现重复执行任务,即两种基本的程序控制结构:迭代、递归。 2.2.1 迭代 「迭代 iteration」是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某 段代码,直到这个条件不再满足。 1. for 循环 for 循环是最常见的迭代形式之一,适合在预先知道迭代次数时使用。
    0 码力 | 378 页 | 17.59 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.2.0 简体中文 C++ 版

    试,统计 平均效率,而这是不现实的。 另一方面,展开完整测试非常耗费资源。随着输入数据量的变化,算法会表现出不同的效率。例如,在输入 数据量较小时,算法 A 的运行时间比算法 B 短;而在输入数据量较大时,测试结果可能恰恰相反。因此,为 了得到有说服力的结论,我们需要测试各种规模的输入数据,而这需要耗费大量的计算资源。 2.1.2 理论估算 由于实际测试具有较大的局限性,因此我们可以考 为渐近复杂度分析(asymptotic complexity analysis),简称复杂度分析。 复杂度分析能够体现算法运行所需的时间和空间资源与输入数据大小之间的关系。它描述了随着输入数据大 小的增加,算法执行所需时间和空间的增长趋势。这个定义有些拗口,我们可以将其分为三个重点来理解。 ‧“时间和空间资源”分别对应时间复杂度(time complexity)和空间复杂度(space complexity)。 ‧“随 在算法中,重复执行某个任务是很常见的,它与复杂度分析息息相关。因此,在介绍时间复杂度和空间复杂 度之前,我们先来了解如何在程序中实现重复执行任务,即两种基本的程序控制结构:迭代、递归。 2.2.1 迭代 迭代(iteration)是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某段 代码,直到这个条件不再满足。 1. for 循环 for 循环是最常见的迭代形式之一,适合在预先知道迭代次数时使用。
    0 码力 | 379 页 | 18.48 MB | 10 月前
    3
  • pdf文档 《深入浅出MFC》2/e

    Worker Thread / 759 產生㆒個 UI Thread / 761 執行緒的結束 / 763 執行緒與同步控制 / 763 MFC 多緒程式實例 / 766 目 錄 25 * 第 15 章 定製㆒個 AppWizard / 771 到底 Wizard 是什麼? / C++ 类別) window focus 窗口焦点(拥有焦点之窗口,将可获得键盘输入) 以下是本书使用之中英文名词对照表: 控制组件,如 拖放(鼠标左键按下,选中图标后拖动,然后放开) 图标(窗口缩小化后的小图样) 串行 列表框、列表清单 通告消息(发生于控制组件) 强制性、先占式、优先权式 进程(一个执行起来的程序) 队列 template C++ 有所谓的class template,一般译为类别模板; 如: CreateWindow 这是Win32 函数 strtok 这是C Runtime 函数库的函数 WM_CREATE 这是Windows 消息 ID_FILE_OPEN 这是资源识别码(ID) CDocument::Serialize 这是MFC 类别的成员函数 m_pNewViewClass 这是MFC 类别的成员变量 BEGIN_MESSAGE_MAP 这是MFC
    0 码力 | 1009 页 | 11.08 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 02 现代 C++ 入门:RAII 内存管理

    getter/setter 函数分离了声明和定 义,实现在另一个文件时! C++ 思想: RAII ( Resource Acquisition Is Initialization ) 资源获取视为初始化,反之,资源释放视为销毁 C++ 除了用于初始化的构造函数( constructor ) 还包括了用于销毁的解构函数( destructor ) 离开 {} 作用域自动释放 手动释放 RAII Python 等垃圾回收语言不同, C++ 的 解构函数是显式的,离开作用域自动销毁,毫不含 糊(有好处也有坏处,对高性能计算而言利大于 弊) 如果没有解构函数,则每个带有返回的分 支都要手动释放所有之前的资源 : RAII :异常安全( exception-safe ) C++ 标准保证当异常发生时,会调用已创建对象的解构函数 。 因此 C++ 中没有(也不需要) finally 语句。 如果此处不关闭,则可等 // 拷贝赋值 • 追求性能时推荐用拷贝构造,因为可以避免一次无参构造,拷贝赋值是出于需要临时修改 对象的灵活性需要。 • 这个函数同样可以由 = delete 和 = default 控制是否默认生成。 • 注: return *this 是为了支持连等号 a = b = c; 编译器自动生成的函数:全家桶 • 其实,除了拷贝构造和拷贝赋值,编译器会自动生成的特殊函数还有这些:
    0 码力 | 96 页 | 16.28 MB | 1 年前
    3
  • pdf文档 现代C++ 教程:高速上手C++11/14/17/20

    decltype(auto) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4 控制流 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 GCC/Clang 等编译器中的支持情况 • C++98 与 C99 之间的区别 11 第 2 章语言可用性的强化 第 2 章语言可用性的强化 当我们声明、定义一个变量或者常量,对代码进行流程控制、面向对象的功能、模板编程等这些都 是运行时之前,可能发生在编写代码或编译器编译代码时的行为。为此,我们通常谈及语言可用性,是 指那些发生在运行时之前的语言行为。 2.1 常量 nullptr return lookup1(); } decltype(auto) look_up_a_string_2() { return lookup2(); } 22 2.4 控制流 第 2 章语言可用性的强化 2.4 控制流 if constexpr 正如本章开头出,我们知道了 C++11 引入了 constexpr 关键字,它将表达式或函数编译为常量结 果。一个很自然的想法是,如果我们把
    0 码力 | 83 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b5 C++版

    在各种机器上进行测试,统计平均效率,而这是不现实的。 另一方面,展开完整测试非常耗费资源。随着输入数据量的变化,算法会表现出不同的效率。例如,在输入 数据量较小时,算法 A 的运行时间比算法 B 更少;而输入数据量较大时,测试结果可能恰恰相反。因此,为 了得到有说服力的结论,我们需要测试各种规模的输入数据,而这需要耗费大量的计算资源。 2.1.2 理论估算 由于实际测试具有较大的局限性,我们可以考虑仅 asymptotic complexity analysis」,简称「复杂度分析」。 复杂度分析体现算法运行所需的时间(空间)资源与输入数据大小之间的关系。它描述了随着输入数据大小 的增加,算法执行所需时间和空间的增长趋势。这个定义有些拗口,我们可以将其分为三个重点来理解。 ‧“时间和空间资源”分别对应「时间复杂度 time complexity」和「空间复杂度 space complexity」。 ‧ 在数据结构与算法中,重复执行某个任务是很常见的,其与算法的复杂度密切相关。而要重复执行某个任务, 我们通常会选用两种基本的程序结构:迭代和递归。 2.2.1 迭代 「迭代 iteration」是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某 段代码,直到这个条件不再满足。 1. for 循环 for 循环是最常见的迭代形式之一,适合预先知道迭代次数时使用。 以下函数基于 for
    0 码力 | 377 页 | 30.69 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b4 C++版

    着我们需要在各种 机器上进行测试,而这是不现实的。 展开完整测试非常耗费资源。随着输入数据量的变化,算法会表现出不同的效率。例如,输入数据量较小时, 算法 A 的运行时间可能短于算法 B;而输入数据量较大时,测试结果可能相反。因此,为了得到有说服力的 结论,我们需要测试各种规模的输入数据,这样需要占用大量的计算资源。 理论估算 由于实际测试具有较大的局限性,我们可以考虑仅通过一些计算来评估算法的效率。这种估算方法被称为 如果你对复杂度分析的概念仍感到困惑,无需担心,我们会在后续章节详细介绍。 2.1.3. 复杂度分析重要性 复杂度分析为我们提供了一把评估算法效率的“标尺”,告诉我们执行某个算法所需的时间和空间资源,并使 我们能够对比不同算法之间的效率。 复杂度是个数学概念,对于初学者可能比较抽象,学习难度相对较高。从这个角度看,复杂度分析可能不太 适合作为第一章的内容。然而,当我们讨论某个数据结构或算 因此以空间换时间通常是 更常用的策略。当然,在数据量很大的情况下,控制空间复杂度也是非常重要的。 2.4. 小结 算法效率评估 2. 复杂度 hello‑algo.com 35 ‧ 时间效率和空间效率是评价算法性能的两个关键维度。 ‧ 我们可以通过实际测试来评估算法效率,但难以消除测试环境的影响,且会耗费大量计算资源。 ‧ 复杂度分析可以克服实际测试的弊端,分析结果适用于所有运行平台,并且能够揭示算法在不同数据
    0 码力 | 343 页 | 27.39 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 07 深入浅出访存优化

    大小,这样即使索引小于 0 或大于 n 也不会越界。 ndarray :解决访问越界问题 • 我们采用了“索性分配更大数组”的办法。 • 因此我们现在给 ndarray 的模板加了一个 额外参数,用来控制边界层的大小。 • 这里我们的图像模糊操作需要向外扩张访 问 8 个元素,因此需要把 a 的边界层大小 声明为 8 ,即 ndarray<2, float, 8> 。 ndarray :解决起始地址对齐问题 大难点:某个改动可能对性能没有效果,甚至反而产生负面效果。然而有经验的优化人员会 知道,这不一定意味着这项改动是错的:有可能要配合多个改动一起上,才能有正面效果。 • 性能优化我们需要尝试所有的排列组合,而不能使用控制变量法,否则无法发现这种组合拳 。 用 stream 直写,进一步优化写入带宽 可以看到应用了分块 + 预取 + 直写的 x_blur ,和直写的拷贝一样快了。虽然 这里 loadu 重复 _mm 系列指令读取 a 和计算加法 。 • 漫长的优化之路,终于有了戏剧性的回报 。 • 但是注意到这里 res[offset] 的访问,一次 只有其中一个被用上,不能很好的利用寄 存器资源。 使用 _mm_stream_ps 和 SIMD 指令,加速计算和直写 • 为了充分填满寄存器,我们把 t 循环和 offset 循环交换一下( loop-interchange ) ,把
    0 码力 | 147 页 | 18.88 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 性能优化之无分支编程 Branchless Programming

    串行的一系列指令并行化。为了理解为什 么需要流水线,我们先反过来,假设没有 流水线,会有什么坏处。 • 例如,右边你今天早上的任务清单。 • 请问你这些任务总共需要多少时间? 任务 时间 占用资源 洗脸 5 分钟 眼睛,嘴巴,手 烧开水 10 分钟 煤气灶 刷牙 5 分钟 嘴巴,手 看比站 15 分钟 眼睛 吃饭 30 分钟 嘴巴,手 拉粑粑 20 分钟 屁股 为什么需要流水线 低效。 任务 时间 占用资源 洗脸 5 分钟 眼睛,嘴巴,手 烧开水 10 分钟 煤气灶 刷牙 5 分钟 嘴巴,手 看比站 15 分钟 眼睛 吃饭 30 分钟 嘴巴,手 拉粑粑 20 分钟 屁股 洗脸 烧开水 刷牙 看比站 吃饭 拉粑粑 5 10 5 15 30 20 为什么需要流水线 • 更高效的办法是,观察每个任务都占用哪些 资源,所占用资源不冲突的可以同时进行, 节省时间。 20 = 40 分钟,比你快一倍多。 任务 时间 占用资源 洗脸 5 分钟 眼睛,嘴巴,手 烧开水 10 分钟 煤气灶 刷牙 5 分钟 嘴巴,手 看比站 15 分钟 眼睛 吃饭 30 分钟 嘴巴,手 拉粑粑 20 分钟 屁股 洗脸 刷牙 烧开水 吃饭 看比站 拉粑粑 5 5 10 20 条件跳转指令 • 让不占用相同资源的任务同时进行,这也是 CPU 流水线的初衷。但理想是美好的,现实
    0 码力 | 47 页 | 8.45 MB | 1 年前
    3
共 23 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
Hello算法1.1C++1.01.2简体中文简体中文深入深入浅出MFC高性性能高性能并行编程优化课件02现代教程高速上手111417200b50b407
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩