积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(15)C++(15)

语言

全部中文(简体)(14)中文(繁体)(1)

格式

全部PDF文档 PDF(10)PPT文档 PPT(5)
 
本次搜索耗时 0.086 秒,为您找到相关结果约 15 个.
  • 全部
  • 后端开发
  • C++
  • 全部
  • 中文(简体)
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《深入浅出MFC》2/e

    018 視窗的生命㆗樞 - 視窗函式 / 019 訊息映射(Message Map)雛形 / 020 對話盒的運作 / 022 模組定義檔(.DEF) / 024 資源描述檔(.RC) / 024 Windows 程式的生與死 / 025 DECLARE_SERIAL/IMPLEMENT_SERIAL 巨集 / 167 沒有範例程式 / 170 Message Mapping(訊息映射) / 170 Frame7 範例程式 / 181 Command Routing(命令繞行) / 191 Frame8 範例程式 / 270 威力強大的資源編輯器 / 294 Icon 編輯器 / 295 Cursor 編輯器 / 296 Bitmap 編輯器 / 297 ToolBar 編輯器 / 297 VERSIONINFO 資源編輯器 / 299
    0 码力 | 1009 页 | 11.08 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b4 C++版

    速排序、归并排序、二分查找等都需 要在数组上进行。 ‧ 查找表:当我们需要快速查找一个元素或者需要查找一个元素的对应关系时,可以使用数组作为查找 表。例如,我们有一个字符到其 ASCII 码的映射,可以将字符的 ASCII 码值作为索引,对应的元素存 放在数组中的对应位置。 ‧ 机器学习:神经网络中大量使用了向量、矩阵、张量之间的线性代数运算,这些数据都是以数组的形式 构建的。数组是神经网络编程中最常使用的数据结构。 的是栈 + 队列的逻辑,因 此可以实现栈与队列的所有应用,并且更加灵活。 92 6. 散列表 6.1. 哈希表 「哈希表 Hash Table」通过建立键 key 与值 value 之间的映射,实现高效的元素查询。具体而言,我们向哈 希表输入一个 key ,则可以在 ?(1) 时间内获取对应的 value 。 以一个包含 ? 个学生的数据库为例,每个学生都有“姓名”和“学号”两项数据。假如我们希望实现“输入 就是找到 key 对应的桶,并在桶中获取 value 。 那么,如何基于 key 来定位对应的桶呢?这是通过「哈希函数 Hash Function」实现的。哈希函数的作用是 将一个较大的输入空间映射到一个较小的输出空间。在哈希表中,输入空间是所有 key ,输出空间是所有桶 (数组索引)。换句话说,输入一个 key ,我们可以通过哈希函数得到该 key 对应的键值对在数组中的存储位 置。
    0 码力 | 343 页 | 27.39 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.1.0 C++ 版

    的算法性能。 Tip 如果你仍对复杂度的概念感到困惑,无须担心,我们会在后续章节中详细介绍。 复杂度分析为我们提供了一把评估算法效率的“标尺”,使我们可以衡量执行某个算法所需的时间和空间资 源,对比不同算法之间的效率。 复杂度是个数学概念,对于初学者可能比较抽象,学习难度相对较高。从这个角度看,复杂度分析可能不太 适合作为最先介绍的内容。然而,当我们讨论某个数据结构或算法的特点时,难以避免要分析其运行速度和 排序和搜索:数组是排序和搜索算法最常用的数据结构。快速排序、归并排序、二分查找等都主要在数 组上进行。 ‧ 查找表:当需要快速查找一个元素或其对应关系时,可以使用数组作为查找表。假如我们想实现字符到 ASCII 码的映射,则可以将字符的 ASCII 码值作为索引,对应的元素存放在数组中的对应位置。 ‧ 机器学习:神经网络中大量使用了向量、矩阵、张量之间的线性代数运算,这些数据都是以数组的形式 构建的。数组是神经网络编程中最常使用的数据结构。 他知道如何计算索书号,从而可以快速找到目标图书。 第 6 章 哈希表 hello‑algo.com 115 6.1 哈希表 哈希表(hash table),又称散列表,它通过建立键 key 与值 value 之间的映射,实现高效的元素查询。具体而 言,我们向哈希表中输入一个键 key ,则可以在 ?(1) 时间内获取对应的值 value 。 如图 6‑1 所示,给定 ? 个学生,每个学生都有“姓名”和“学号”两项数据。假如我们希望实现“输入一个
    0 码力 | 379 页 | 18.47 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b5 C++版

    量下的算法性能。 � 如果你仍对复杂度的概念感到困惑,无须担心,我们会在后续章节中详细介绍。 复杂度分析为我们提供了一把评估算法效率的“标尺”,使我们可以衡量执行某个算法所需的时间和空间资 源,对比不同算法之间的效率。 复杂度是个数学概念,对于初学者可能比较抽象,学习难度相对较高。从这个角度看,复杂度分析可能不太 适合作为最先介绍的内容。然而,当我们讨论某个数据结构或算法的特点时,难以避免要分析其运行速度和 快速排序、归并排序、二分查找等都主要在数 组上进行。 ‧ 查找表:当我们需要快速查找一个元素或者需要查找一个元素的对应关系时,可以使用数组作为查找 表。假如我们想要实现字符到 ASCII 码的映射,则可以将字符的 ASCII 码值作为索引,对应的元素存 放在数组中的对应位置。 ‧ 机器学习:神经网络中大量使用了向量、矩阵、张量之间的线性代数运算,这些数据都是以数组的形式 构建的。数组是神经网络编程中最常使用的数据结构。 他知道如何计算索书号,从而可以快速找到目标书籍。 第 6 章 哈希表 hello‑algo.com 110 6.1 哈希表 「哈希表 hash table」,又称「散列表」,其通过建立键 key 与值 value 之间的映射,实现高效的元素查询。具 体而言,我们向哈希表输入一个键 key ,则可以在 ?(1) 时间内获取对应的值 value 。 如图 6‑1 所示,给定 ? 个学生,每个学生都有“姓名”和“学号”两项数据。假如我们希望实现“输入一个
    0 码力 | 377 页 | 30.69 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0 C++版

    量下的算法性能。 � 如果你仍对复杂度的概念感到困惑,无须担心,我们会在后续章节中详细介绍。 复杂度分析为我们提供了一把评估算法效率的“标尺”,使我们可以衡量执行某个算法所需的时间和空间资 源,对比不同算法之间的效率。 复杂度是个数学概念,对于初学者可能比较抽象,学习难度相对较高。从这个角度看,复杂度分析可能不太 适合作为最先介绍的内容。然而,当我们讨论某个数据结构或算法的特点时,难以避免要分析其运行速度和 排序和搜索:数组是排序和搜索算法最常用的数据结构。快速排序、归并排序、二分查找等都主要在数 组上进行。 ‧ 查找表:当需要快速查找一个元素或其对应关系时,可以使用数组作为查找表。假如我们想实现字符到 ASCII 码的映射,则可以将字符的 ASCII 码值作为索引,对应的元素存放在数组中的对应位置。 ‧ 机器学习:神经网络中大量使用了向量、矩阵、张量之间的线性代数运算,这些数据都是以数组的形式 构建的。数组是神经网络编程中最常使用的数据结构。 他知道如何计算索书号,从而可以快速找到目标图书。 第 6 章 哈希表 hello‑algo.com 115 6.1 哈希表 「哈希表 hash table」,又称「散列表」,它通过建立键 key 与值 value 之间的映射,实现高效的元素查询。具 体而言,我们向哈希表中输入一个键 key ,则可以在 ?(1) 时间内获取对应的值 value 。 如图 6‑1 所示,给定 ? 个学生,每个学生都有“姓名”和“学号”两项数据。假如我们希望实现“输入一个
    0 码力 | 378 页 | 17.59 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.2.0 简体中文 C++ 版

    的算法性能。 Tip 如果你仍对复杂度的概念感到困惑,无须担心,我们会在后续章节中详细介绍。 复杂度分析为我们提供了一把评估算法效率的“标尺”,使我们可以衡量执行某个算法所需的时间和空间资 源,对比不同算法之间的效率。 复杂度是个数学概念,对于初学者可能比较抽象,学习难度相对较高。从这个角度看,复杂度分析可能不太 适合作为最先介绍的内容。然而,当我们讨论某个数据结构或算法的特点时,难以避免要分析其运行速度和 排序和搜索:数组是排序和搜索算法最常用的数据结构。快速排序、归并排序、二分查找等都主要在数 组上进行。 ‧ 查找表:当需要快速查找一个元素或其对应关系时,可以使用数组作为查找表。假如我们想实现字符到 ASCII 码的映射,则可以将字符的 ASCII 码值作为索引,对应的元素存放在数组中的对应位置。 ‧ 机器学习:神经网络中大量使用了向量、矩阵、张量之间的线性代数运算,这些数据都是以数组的形式 构建的。数组是神经网络编程中最常使用的数据结构。 他知道如何计算索书号,从而可以快速找到目标图书。 第 6 章 哈希表 www.hello‑algo.com 115 6.1 哈希表 哈希表(hash table),又称散列表,它通过建立键 key 与值 value 之间的映射,实现高效的元素查询。具体而 言,我们向哈希表中输入一个键 key ,则可以在 ?(1) 时间内获取对应的值 value 。 如图 6‑1 所示,给定 ? 个学生,每个学生都有“姓名”和“学号”两项数据。假如我们希望实现“输入一个
    0 码力 | 379 页 | 18.48 MB | 10 月前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 13 C++ STL 容器全解之 vector

    值得注意的是, [] 运算符在索引超出数组大 小时并不会直接报错,这是为了性能的考虑。 • 如果你不小心用 [] 访问了越界的索引,可能 会覆盖掉别的变量导致程序行为异常,或是访 问到操作系统未映射的区域导致奔溃。 • int &operator[](size_t i) noexcept; • int const &operator[](size_t i) const noexcept; It 可以是其他容器的迭代器类型 • iterator insert(const_iterator pos, It beg, It end); vector 容器: insert 函数,作为数据源的对方容器可以是不同类型 • 顺便一提,对方容器也可以是不同类型的,最底线的 要求是只要他的迭代器有 ++ 和 * 运算符即可。 • 例如这里的 list::iterator 就符合需求。 It 可以是其他容器的迭代器类 型 • iterator insert(const_iterator pos, It beg, It end); vector 容器: insert 函数,作为数据源的对方容器可以是不同类型 • 对方容器还可以是个 C 语言风格的数组,因为 C 语言类型没有办法加成员函数 begin 和 end ,可以用 std::begin 和 std::end 这两个全
    0 码力 | 90 页 | 4.93 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b1 C++版

    当然,你也可以点击“Download ZIP”直接下载代码压缩包,本地解压即可。 Figure 0‑5. 克隆仓库与下载代码 第三步:运行源代码。若代码块的顶部标有文件名称,则可在仓库 codes 文件夹中找到对应的 源代码文件。源 代码文件可以帮助你省去不必要的调试时间,将精力集中在学习内容上。 0. 写在前面 hello‑algo.com 6 Figure 0‑6. 代码块与对应的源代码文件 0.2.5. 在提问讨论中共同成长 现的时间效率与空间效率 对比,与上述栈的结论相同。 ‧ 双向队列的两端都可以添加与删除元素。 82 6. 散列表 6.1. 哈希表 哈希表通过建立「键 key」和「值 value」之间的映射,实现高效的元素查找。具体地,输入一个 key ,在哈 希表中查询并获取 value ,时间复杂度为 ?(1) 。 例如,给定一个包含 ? 个学生的数据库,每个学生有“姓名 name ”和“学号 最简单地,我们可以仅用一个「数组」来实现哈希表。首先,将所有 value 放入数组中,那么每个 value 在数 组中都有唯一的「索引」。显然,访问 value 需要给定索引,而为了 建立 key 和索引之间的映射关系,我们需 要使用「哈希函数 Hash Function」。 设数组为 bucket ,哈希函数为 f(x) ,输入键为 key 。那么获取 value 的步骤为: 1. 通过哈希函数计算出索引,即
    0 码力 | 187 页 | 14.71 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b2 C++版

    当然,你也可以点击“Download ZIP”直接下载代码压缩包,本地解压即可。 Figure 0‑5. 克隆仓库与下载代码 第三步:运行源代码。若代码块的顶部标有文件名称,则可在仓库 codes 文件夹中找到对应的 源代码文件。源 代码文件可以帮助你省去不必要的调试时间,将精力集中在学习内容上。 0. 写在前面 hello‑algo.com 6 Figure 0‑6. 代码块与对应的源代码文件 0.2.5. 在提问讨论中共同成长 现的时间效率与空间效率 对比,与上述栈的结论相同。 ‧ 双向队列的两端都可以添加与删除元素。 82 6. 散列表 6.1. 哈希表 哈希表通过建立「键 key」和「值 value」之间的映射,实现高效的元素查找。具体地,输入一个 key ,在哈 希表中查询并获取 value ,时间复杂度为 ?(1) 。 例如,给定一个包含 ? 个学生的数据库,每个学生有“姓名 name ”和“学号 Bucket」,用于存储键值对。 我们将键值对 key, value 包装成一个类 Entry ,并将所有 Entry 都放入数组中,那么每个 Entry 在数组中都 有唯一的索引。而为了建立 key 和索引之间的映射关系,我们需要使用「哈希函数 Hash Function」。 设哈希表的数组为 buckets ,哈希函数为 f(x) ,那么查询操作的步骤为: 1. 输入 key ,通过哈希函数计算出索引 index
    0 码力 | 197 页 | 15.72 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 12 从计算机组成原理看 C 语言指针

    位计算机的寄存器能处理 64 位的整数,实际上的内存地址并没有 64 位。 • 实际上地址的高 16 位始终和第 48 位一致(符号扩展),也就是虚拟地址空间只有 48 位。 • 而经过 MMU 映射后实际给内存的地址只有 39 位,因此如今的 x64 架构实际上只能访 问 512GB 内存,如果插了超过这个大小的内存条他也不会认出来。 • 此外, 16 位计算机实际上能通过额外的段寄存器访问到 我们可以通过 sizeof(T) 获取 T 类型的字节数。 实验:不同大小之间的整数互转 • C 语言可以用 (short)x 的形式来强制把任意类型的 x 转换为 short 类型。 • 如果源类型比目的类型小,那么会根据目的类型是有 符号还是无符号的,自动扩展他的符号位。 • 例如 char 类型的 -128 是 10000000 • 强制转换为 short 后是 11111111 10000000
    0 码力 | 128 页 | 2.95 MB | 1 年前
    3
共 15 条
  • 1
  • 2
前往
页
相关搜索词
深入深入浅出MFCHello算法1.00b4C++1.10b51.2简体中文简体中文高性性能高性能并行编程优化课件130b10b212
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩