积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(28)C++(28)

语言

全部中文(简体)(27)中文(繁体)(1)

格式

全部PPT文档 PPT(17)PDF文档 PDF(11)
 
本次搜索耗时 0.048 秒,为您找到相关结果约 28 个.
  • 全部
  • 后端开发
  • C++
  • 全部
  • 中文(简体)
  • 中文(繁体)
  • 全部
  • PPT文档 PPT
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • ppt文档 C++高性能并行编程与优化 - 课件 - 02 现代 C++ 入门:RAII 内存管理

    分为前半段和后半段,前半段主要介绍现代 C++ ,后半段主要介绍并行编程与优化。 1.课程安排与开发环境搭建: cmake 与 git 入门 2.现代 C++ 入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 们来点(相对)简单的作为饭后甜点吧! C++98 :令人头疼的内存管理 • 在没有智能指针的 C++ 中,我们只能手 动去 new 和 delete 指针。这非常容易出 错,一旦马虎的程序员忘记释放指针,就 会导致内存泄露等情况,更可能被黑客利 用空悬指针篡改系统内存从而盗取重要数 据等。 RAII 解决内存管理的问题: unique_ptr • 似曾相识的情形……是的,和我们刚刚提 放时。比如:指向窗口中上一次被点击的元素。 5. 初学者可以多用 shared_ptr 和 weak_ptr 的组合,更安全。 shared_ptr 管理的对象生命周期,取决于所有引用中,最长寿的那一个。 unique_ptr 管理的对象生命周期长度,取决于他所属的唯一一个引用的寿命 。 那是不是只要 shared_ptr 就行,不用 unique_ptr 了? • 可以适当使用减轻初学者的压力,因为他的行为和
    0 码力 | 96 页 | 16.28 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 16 现代 CMake 模块化项目管理指南

    现代 CMake 模块化项目管理指南 彭于斌( @archibate ) 课件 & 源码: https://github.com/parallel101/course 往期录播: https://space.bilibili.com/263032155 找不到头文 件怎么办呀 CMake Cookbook 小彭老师建议 : ~~-·~·~-·~ -~·-·~·- 第一章:文件 / 1/lib/cmake/Qt5” 设置。 举例, Windows 系统, Qt5 • 例如我把 Qt5 安装到了 D:/Qt5.12.1 。 • 首先找到他里面的 Qt5Config.cmake 文件所在位置(可以用文件管理器的“搜索”功能)。 • 假如你找到该文件的位置是 D:/Qt5.12.1/msvc2017/lib/cmake/Qt5/Qt5Config.cmake ,那 么请你设置变量 Qt5_DIR 为 阶段,可以从命令行设置(注意要加引号): • cmake -B build -DQt5_DIR=”D:/Qt5.12.1/msvc2017/lib/cmake/Qt5” • (2) 全局启用。右键“我的电脑” ->“ 管理” ->“ 高级”添加一个环境变量 Qt5_DIR 值为 D:/Qt5.12.1/msvc2017/lib/cmake/Qt5 ,然后重启 Visual Studio 。这样以后你每次构建任 何项目,
    0 码力 | 56 页 | 6.87 MB | 1 年前
    3
  • pdf文档 《深入浅出MFC》2/e

    还有,当然,您的深入浅出MFC! v 印尼. 雅加达robin.hood@ibm.net 对您的书总是捧读再三,即使翻烂了也值得。这本深入浅出MFC,不但具有学习价值, 亦极具参考价值。 我买您的第一本书,好象是「内存管理与多任务」。还记得当时热中突破640KB 内存, 发现该书如获至宝。数月前购买了深入浅出MFC,并利用闲暇时间翻阅学习(包括如厕 时间... )。 我的学习曲线比较不同,我比较倾向于了解事情的因,而不是该如何做事情。比方说,「应 Menu 編輯器 / 301 Accelerator 編輯器 / 303 Dialog 編輯器 / 304 * Console 程式的專案管理 / 305 第㆔篇 淺出 MFC 程式設計 / 309 第5章 總觀 Application Framework / 311 什麼是 Application Framework Frame(View Frame) / 459 深入淺出 MFC 20 Document Template / 459 CDocTemplate 管理 CDocument / CView / CFrameWnd / 460 Scribble Step1 的 Document(資料結構設計) / 468 MFC
    0 码力 | 1009 页 | 11.08 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 01 学 C++ 从 CMake 学起

    分为前半段和后半段,前半段主要介绍现代 C++ ,后半段主要介绍并行编程与优化。 1.课程安排与开发环境搭建: cmake 与 git 入门 2.现代 C++ 入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 的堆栈回溯便于调试 7. google/googletest - 谷歌单元测试框架 8. google/benchmark - 谷歌性能评估框架 9. glfw/glfw - OpenGL 窗口和上下文管理 10.libigl/libigl - 各种图形学算法大合集 fmt - 使用这个神奇的格式化库 • fmt::format 的用法和 Python 的 str.format 大致相似: CMake OpenVDB::openvdb 6. Boost::iostreams 7. Eigen3::Eigen 8. OpenMP::OpenMP_CXX • 不同的包之间常常有着依赖关系,而包管理器的作者为 find_package 编写的脚本(例如 /usr/lib/cmake/TBB/TBBConfig.cmake )能够自动查找所有依赖,并利用刚刚提 到的 PUBLIC PRIVATE
    0 码力 | 32 页 | 11.40 MB | 1 年前
    3
  • pdf文档 现代C++ 教程:高速上手C++11/14/17/20

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 第 5 章智能指针与内存管理 52 5.1 RAII 与引用计数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . // 输出 0 std::cout << "capacity:" << v.capacity() << std::endl; // 输出 0 // 如下可看出 std::vector 的存储是自动管理的,按需自动扩张 // 但是如果空间不足,需要重新分配更多内存,而重分配内存通常是性能上有开销的操作 v.push_back(1); v.push_back(2); v.push_back(3); std::variant const & v) { std::visit([&](auto && x){ s << x;}, v); return s; } 51 总结 第 5 章智能指针与内存管理 这样我们就能: int i = 1; std::cout << tuple_index(t, i) << std::endl; 元组合并与遍历 还有一个常见的需求就是合并两个元组,这可以通过
    0 码力 | 83 页 | 2.42 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 11 现代 CMake 进阶指南

    这个构建系统的构 建规则。 Ninja 是一个高性能,跨平台的构建系统, Linux 、 Windows 、 MacOS 上都可 以用。 • Ninja 可以从包管理器里安装,没有包管理器的 Windows 可以用 Python 的包管理器安 装: • pip install ninja (有趣的事实: CMake 也可以通过 pip install cmake 安装……) • 事实上, MSBuild /usr/lib/cmake/TBB/TBBConfig.cmake 长啥样? 不论是 TBBConfig.cmake 还是 FindTBB.cmake ,这个文件通常 由库的作者提供,在 Linux 的包管理器安装 tbb 后也会自动安装 这个文件。少部分对 CMake 不友好的第三方库,需要自己写 FindXXX.cmake 才能使用。 老年项目案例: OpenVDB (反面教材) 一些老年项目作者喜欢在项目里自己塞几个
    0 码力 | 166 页 | 6.54 MB | 1 年前
    3
  • pdf文档 面向亿行 C/C++ 代码的静态分析系统设计及实践-肖枭

    静态分析系统设计及实践 肖枭 自我介绍 2016年香港科技大学取得博士学位 过去10年一直以极高的热情从事静态 分析技术的学术用研究 合作创办源伞科技,致力于推动静态 分析技术在企业中的应用 目录 代码质量管理是个大问题 静态分析+代码评审的实践  学习和强调,红线和惩罚,100%的测试 覆盖率,和事后复盘并不够  有经验的程序员也会犯错  对代码提要求很难监督落实  测试更多是验证功能,很难检测编码缺陷 2019:路径遍历内 存泄漏分析的多项式算法 需求2:误报率要低 方法1: 数据驱动的改进循环 降低 误报率 标注反馈 优化 代码扫描 新增分析器 淘汰分析器 感知误报率 数据驱动的开发管理 方法2: 高低搭配 高危,误报率偏高的高价值检查器 搭配其他误报率低的检查器 避免重要问题被忽略的同时降低 “感知误报率” 降低感知误报率 方法3:易于理解的报告  关键步骤高亮和行为解释 降低感知误报率 方法5:防止误标和作弊  标记量,间隔时间,标记内容  用基线数据训练模型  用聚类和离群检测找到违反者  红黑榜鼓励参与者 降低感知误报率 用数据风控的方式管理 总结:代码评审中的静态分析  无需额外操作,不改变程序员习惯的流程  只分析变化的代码引起的问题  使用频次高,可形成数据驱动的分析器改进和 代码质量监控  推动规范落地和培训教育新员工
    0 码力 | 39 页 | 6.88 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 09 CUDA C++ 流体仿真实战

    必须乘以 sizeof( 元素类型 ) ,否则出错。 • 这里用了访问者模式( Accessor , GPU 编程常用)。 原来的 CudaSurface 管理资源,禁止拷贝。然后单独 弄一个访问者类 CudaSurfaceAccessor ,不管理资源 ,仅仅是指向资源的一个弱引用,可以随意拷贝。并把 读写访问的方法( surf3Dread )定义在访问者类。 CUDA 表面对象:封装 • cudaFilterModeLinear :三线性插值更平滑(左图) • cudaFilterModePoint :最接近的那个点作为值(右 图) 烟雾仿真系统:封装 • 我们统一通过 unique_ptr 来管理对象,这样尽管 CudaSurface 对象是不可 移动的,我们仍可以通过移 动其指针的方式来实现双缓 冲( std::swap )。 对流部分 对流部分:计算对流后位置( RK3 )
    0 码力 | 58 页 | 14.90 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 05 C++11 开始的多线程编程

    分为前半段和后半段,前半段主要介绍现代 C++ ,后半段主要介绍并行编程与优化。 1.课程安排与开发环境搭建: cmake 与 git 入门 2.现代 C++ 入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 类的成员函数 join() 来等待该进程结束。 std::thread 的解构函数会销毁线程 • 作为一个 C++ 类, std::thread 同样遵循 RAII 思想和三五法则:因为管理着资源, 他自定义了解构函数,删除了拷贝构造 / 赋 值函数,但是提供了移动构造 / 赋值函数。 • 因此,当 t1 所在的函数退出时,就会调用 std::thread 的解构函数,这会销毁 ——还没开始执行他的线程就被销毁了。 解构函数不再销毁线程: t1.detach() • 解决方案:调用成员函数 detach() 分离该 线程——意味着线程的生命周期不再由当 前 std::thread 对象管理,而是在线程退 出以后自动销毁自己。 • 不过这样还是会在进程退出时候自动退出 。 解构函数不再销毁线程:移动到全局线程池 • 但是 detach 的问题是进程退出时候不会 等待所有子线程执行完毕。所以另一种解
    0 码力 | 79 页 | 14.11 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 07 深入浅出访存优化

    • 这样一次随机访问之后会伴随着 64 次顺序访问, 能被 CPU 检测到,从而启动缓存行预取,避免了 等待数据抵达前空转浪费时间。 页对齐的重要性 • 为什么要 4KB ?原来现在操作系统管理内存是用分页 ( page ),程序的内存是一页一页贴在地址空间中的, 有些地方可能不可访问,或者还没有分配,则把这个页设 为不可用状态,访问他就会出错,进入内核模式。 • 因此硬件出于安全,预取不能跨越页边界,否则可能会触 给数组分配内存,是内核执 行内存分配的这个动作,花费了额外的时间。而第二次因为内存已经被分配上了,所以再 次访问也不会触发缺页中断,所以看起来比第一次快很多。 进一步:分配是按页面( 4KB )来管理的 • 当一个尚且处于“不可用”的 malloc 过的区间被访问,操作系统不是把整个区间全部分配完 毕,而是只把当前写入地址所在的页面( 4KB 大小)给分配上。也就是说用户访问 a[0] 以后只分配了 #ifdef WITH_TBB 包围住需 要用到 tbb 的部分,这样即使没有 tbb 的同学也能 正常编译其他没有 tbb 的 benchmark 。 • 毕竟微软的钱全用在买暴雪上了,没钱搞包管理器。 实战案例:矩阵乘法 • 分析访存规律: • a(i, j) 始终在一个地址不动(一般)。 • b(i, t) 每次跳跃 n 间隔的访问(坏)。 • c(t, j) 连续的顺序访问(好)。
    0 码力 | 147 页 | 18.88 MB | 1 年前
    3
共 28 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
C++高性性能高性能并行编程优化课件0216深入深入浅出MFC01现代教程高速上手11141720面向亿行代码静态分析系统设计实践肖枭090507
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩