积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(23)C++(23)

语言

全部中文(简体)(22)中文(繁体)(1)

格式

全部PPT文档 PPT(12)PDF文档 PDF(11)
 
本次搜索耗时 0.089 秒,为您找到相关结果约 23 个.
  • 全部
  • 后端开发
  • C++
  • 全部
  • 中文(简体)
  • 中文(繁体)
  • 全部
  • PPT文档 PPT
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《深入浅出MFC》2/e

    Scribble Step4 做準備 / 543 第9章 訊息映射與命令繞行 / 547 到底要解決什麼 / 547 訊息分類 / 549 萬流歸宗 Command Target(CCmdTarget) / 550 ㆔個奇怪的巨集,㆒張巨大的網 / 551 DECLARE_MESSAGE_MAP 巨集 訊息映射網的形成:BEGIN_/ON_/END_ 巨集 / 544 米諾托斯(Minotauros)與西修斯(Theseus) / 560 兩萬五千里長征 - 訊息的流竄 / 566 直線㆖溯(㆒般 Windows 訊息) / 567 拐彎㆖溯(WM_COMMAND 命令訊息) / 572 深入淺出 MFC Worker Thread / 759 產生㆒個 UI Thread / 761 執行緒的結束 / 763 執行緒與同步控制 / 763 MFC 多緒程式實例 / 766 目 錄 25 * 第 15 章 定製㆒個 AppWizard / 771 到底 Wizard 是什麼? /
    0 码力 | 1009 页 | 11.08 MB | 1 年前
    3
  • pdf文档 现代C++ 教程:高速上手C++11/14/17/20

    decltype(auto) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4 控制流 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 GCC/Clang 等编译器中的支持情况 • C++98 与 C99 之间的区别 11 第 2 章语言可用性的强化 第 2 章语言可用性的强化 当我们声明、定义一个变量或者常量,对代码进行流程控制、面向对象的功能、模板编程等这些都 是运行时之前,可能发生在编写代码或编译器编译代码时的行为。为此,我们通常谈及语言可用性,是 指那些发生在运行时之前的语言行为。 2.1 常量 nullptr return lookup1(); } decltype(auto) look_up_a_string_2() { return lookup2(); } 22 2.4 控制流 第 2 章语言可用性的强化 2.4 控制流 if constexpr 正如本章开头出,我们知道了 C++11 引入了 constexpr 关键字,它将表达式或函数编译为常量结 果。一个很自然的想法是,如果我们把
    0 码力 | 83 页 | 2.42 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 15 C++ 系列课:字符与字符串

    万能的 map 容器全家桶及其妙用举例 5. 函子 functor 与 lambda 表达式知多少 6. 通过实战案例来学习 STL 算法库 7. C++ 标准输入输出流 & 字符串格式化 8. traits 技术,用户自定义迭代器与算法 9. allocator ,内存管理与对象生命周期 ASCII 码 第 1 章 计算机如何表达字符 https://zh 类特殊的控制字符 (control character) : • 0 表示空字符(‘ \0’ ) • 9 表示 Tab 制表符(‘ \t’ ) • 10 表示换行(‘ \n’ ) • 13 表示回车(‘ \r’ ) • 27 表示 ESC 键(‘ \x1b’ ) • 127 表示 DEL 键(‘ \x7f’ )等 • 0~31 和 127 这些整数,就构成了 ASCII 码中控制字符的部分。 码中控制字符的部分。 关于控制字符的一个冷知识 • 在 Linux 命令行中启动 cat 。 • 试试按 Ctrl+R , Ctrl+E , Ctrl+C 等一系列 组合键,看到出现了什么? • 可以看到显示的字符变成了 ^R ^E ^C 等… … • 这是 Unix 类系统显示控制字符的一种方式 。 • 众所周知,我们常用 Ctrl+C 来发送中断信号 ( SIGINT )强制终止程序,这时常常会看到
    0 码力 | 162 页 | 40.20 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.1.0 C++ 版

    在算法中,重复执行某个任务是很常见的,它与复杂度分析息息相关。因此,在介绍时间复杂度和空间复杂 度之前,我们先来了解如何在程序中实现重复执行任务,即两种基本的程序控制结构:迭代、递归。 2.2.1 迭代 迭代(iteration)是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某段 代码,直到这个条件不再满足。 1. for 循环 for 循环是最常见的迭代形式之一,适合在预先知道迭代次数时使用。 思路称为“以空间换时间”;反之,则称为“以时间换空间”。 选择哪种思路取决于我们更看重哪个方面。在大多数情况下,时间比空间更宝贵,因此“以空间换时间”通 常是更常用的策略。当然,在数据量很大的情况下,控制空间复杂度也非常重要。 2.5 小结 1. 重点回顾 算法效率评估 ‧ 时间效率和空间效率是衡量算法优劣的两个主要评价指标。 ‧ 我们可以通过实际测试来评估算法效率,但难以消除测试环境的影响,且会耗费大量计算资源。 标准信息交换代码)。它使用 7 位二进制数(一个字节的低 7 位)表示一个字符,最多能够表示 128 个不同的 字符。如图 3‑6 所示,ASCII 码包括英文字母的大小写、数字 0 ~ 9、一些标点符号,以及一些控制字符(如 换行符和制表符)。 图 3‑6 ASCII 码 然而,ASCII 码仅能够表示英文。随着计算机的全球化,诞生了一种能够表示更多语言的 EASCII 字符集。它 在 ASCII 的 7
    0 码力 | 379 页 | 18.47 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0 C++版

    在算法中,重复执行某个任务是很常见的,它与复杂度分析息息相关。因此,在介绍时间复杂度和空间复杂 度之前,我们先来了解如何在程序中实现重复执行任务,即两种基本的程序控制结构:迭代、递归。 2.2.1 迭代 「迭代 iteration」是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某 段代码,直到这个条件不再满足。 1. for 循环 for 循环是最常见的迭代形式之一,适合在预先知道迭代次数时使用。 思路称为“以空间换时间”;反之,则称为“以时间换空间”。 选择哪种思路取决于我们更看重哪个方面。在大多数情况下,时间比空间更宝贵,因此“以空间换时间”通 常是更常用的策略。当然,在数据量很大的情况下,控制空间复杂度也非常重要。 2.5 小结 1. 重点回顾 算法效率评估 ‧ 时间效率和空间效率是衡量算法优劣的两个主要评价指标。 ‧ 我们可以通过实际测试来评估算法效率,但难以消除测试环境的影响,且会耗费大量计算资源。 国标准信息交换代码)。它使用 7 位二进制数(一个字节的低 7 位)表示一个字符,最多能够表示 128 个不 同的字符。如图 3‑6 所示,ASCII 码包括英文字母的大小写、数字 0 ~ 9、一些标点符号,以及一些控制字符 (如换行符和制表符)。 图 3‑6 ASCII 码 然而,ASCII 码仅能够表示英文。随着计算机的全球化,诞生了一种能够表示更多语言的「EASCII」字符 集。它在 ASCII 的 7
    0 码力 | 378 页 | 17.59 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.2.0 简体中文 C++ 版

    在算法中,重复执行某个任务是很常见的,它与复杂度分析息息相关。因此,在介绍时间复杂度和空间复杂 度之前,我们先来了解如何在程序中实现重复执行任务,即两种基本的程序控制结构:迭代、递归。 2.2.1 迭代 迭代(iteration)是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某段 代码,直到这个条件不再满足。 1. for 循环 for 循环是最常见的迭代形式之一,适合在预先知道迭代次数时使用。 思路称为“以空间换时间”;反之,则称为“以时间换空间”。 选择哪种思路取决于我们更看重哪个方面。在大多数情况下,时间比空间更宝贵,因此“以空间换时间”通 常是更常用的策略。当然,在数据量很大的情况下,控制空间复杂度也非常重要。 2.5 小结 1. 重点回顾 算法效率评估 ‧ 时间效率和空间效率是衡量算法优劣的两个主要评价指标。 ‧ 我们可以通过实际测试来评估算法效率,但难以消除测试环境的影响,且会耗费大量计算资源。 标准信息交换代码)。它使用 7 位二进制数(一个字节的低 7 位)表示一个字符,最多能够表示 128 个不同的 字符。如图 3‑6 所示,ASCII 码包括英文字母的大小写、数字 0 ~ 9、一些标点符号,以及一些控制字符(如 换行符和制表符)。 图 3‑6 ASCII 码 然而,ASCII 码仅能够表示英文。随着计算机的全球化,诞生了一种能够表示更多语言的 EASCII 字符集。它 在 ASCII 的 7
    0 码力 | 379 页 | 18.48 MB | 10 月前
    3
  • pdf文档 Hello 算法 1.0.0b5 C++版

    在数据结构与算法中,重复执行某个任务是很常见的,其与算法的复杂度密切相关。而要重复执行某个任务, 我们通常会选用两种基本的程序结构:迭代和递归。 2.2.1 迭代 「迭代 iteration」是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某 段代码,直到这个条件不再满足。 1. for 循环 for 循环是最常见的迭代形式之一,适合预先知道迭代次数时使用。 以下函数基于 for 思路称为“以空间换时间”;反之,则称为“以时间换空间”。 选择哪种思路取决于我们更看重哪个方面。在大多数情况下,时间比空间更宝贵,因此“以空间换时间”通 常是更常用的策略。当然,在数据量很大的情况下,控制空间复杂度也是非常重要的。 2.5 小结 1. 重点回顾 算法效率评估 ‧ 时间效率和空间效率是衡量算法优劣的两个主要评价指标。 ‧ 我们可以通过实际测试来评估算法效率,但难以消除测试环境的影响,且会耗费大量计算资源。 用 7 位二进制数(即一个字节的 低 7 位)表示一个字符,最多能够表示 128 个不同的字符。如图 3‑6 所示,ASCII 码包括英文字母的大小写、 数字 0 ~ 9、一些标点符号,以及一些控制字符(如换行符和制表符)。 图 3‑6 ASCII 码 然而,ASCII 码仅能够表示英文。随着计算机的全球化,诞生了一种能够表示更多语言的字符集「EASCII」。 它在 ASCII 的 7 位基础上扩展到
    0 码力 | 377 页 | 30.69 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b4 C++版

    思路称为“以空间换时间”;反之,则称为“以时间换空间”。 选择哪种思路取决于我们更看重哪个方面。在大多数情况下,时间比空间更宝贵,因此以空间换时间通常是 更常用的策略。当然,在数据量很大的情况下,控制空间复杂度也是非常重要的。 2.4. 小结 算法效率评估 2. 复杂度 hello‑algo.com 35 ‧ 时间效率和空间效率是评价算法性能的两个关键维度。 ‧ 我们可以通过实际测试来 码」是最早出现的字符集,全称为“美国标准信息交换代码”。它使用 7 位二进制数(即一个字节的 低 7 位)表示一个字符,最多能够表示 128 个不同的字符。这包括英文字母的大小写、数字 0‑9 、一些标点 符号,以及一些控制字符(如换行符和制表符)。 Figure 3‑6. ASCII 码 然而,ASCII 码仅能够表示英文。随着计算机的全球化,诞生了一种能够表示更多语言的字符集「EASCII」。 它在 ASCII 组进程进行循环。每个进程被赋予一个时间片,当时间片用完时,CPU 将切换到下一个进程。这种循 环的操作就可以通过循环链表来实现。 ‧ 数据缓冲区:在某些数据缓冲区的实现中,也可能会使用到循环链表。比如在音频、视频播放器中,数 据流可能会被分成多个缓冲块并放入一个循环链表,以便实现无缝播放。 4.3. 列表 数组长度不可变导致实用性降低。在许多情况下,我们事先无法确定需要存储多少数据,这使数组长度的选 择变得困难。若长度过
    0 码力 | 343 页 | 27.39 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.2.0 繁体中文 C++ 版

    在演算法中,重複執行某個任務是很常見的,它與複雜度分析息息相關。因此,在介紹時間複雜度和空間複 雜度之前,我們先來了解如何在程式中實現重複執行任務,即兩種基本的程式控制結構:迭代、遞迴。 2.2.1 迭代 迭代(iteration)是一種重複執行某個任務的控制結構。在迭代中,程式會在滿足一定的條件下重複執行某段 程式碼,直到這個條件不再滿足。 1. for 迴圈 for 迴圈是最常見的迭代形式之一,適合在預先知道迭代次數時使用。 度的思路稱為“以空間換時間”;反之,則稱為“以時間換空間”。 選擇哪種思路取決於我們更看重哪個方面。在大多數情況下,時間比空間更寶貴,因此“以空間換時間”通 常是更常用的策略。當然,在資料量很大的情況下,控制空間複雜度也非常重要。 2.5 小結 1. 重點回顧 演算法效率評估 ‧ 時間效率和空間效率是衡量演算法優劣的兩個主要評價指標。 ‧ 我們可以透過實際測試來評估演算法效率,但難以消除測試環境的影響,且會耗費大量計算資源。 標準資訊交換程式碼)。它使用 7 位二進位制數(一個位元組的低 7 位)表示一個字元,最多能夠表示 128 個 不同的字元。如圖 3‑6 所示,ASCII 碼包括英文字母的大小寫、數字 0 ~ 9、一些標點符號,以及一些控制字 元(如換行符和製表符)。 圖 3‑6 ASCII 碼 然而,ASCII 碼僅能夠表示英文。隨著計算機的全球化,誕生了一種能夠表示更多語言的 EASCII 字符集。它 在 ASCII 的 7
    0 码力 | 379 页 | 18.79 MB | 10 月前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 09 CUDA C++ 流体仿真实战

    动其指针的方式来实现双缓 冲( std::swap )。 对流部分 对流部分:计算对流后位置( RK3 ) • 这里我参考了 Taichi 官方案例中的 stable_fluid.py 代码(二维定常流仿真),主要由 k-ye 编写 ,我学习 GAMES201 后贡献了支持 RK2 和 RK3 的版本。这里我们用高效的 CUDA 纹理对象 在 C++ 中重新实现了一遍,利用了硬件的三线性插值实现半拉格朗日( ;带入 dv/dt = -p 得 div grad p = 0 。 • 因此为了模拟不可压缩流我们要求保证 p 满足 div grad p = 0 ? • 不妨假设现在 div v ≠ 0 ,然后想办法如何通过修正压强来消除他,即让 div grad p = -div v 。 • 因此为了模拟不可压缩流我们要求解压强的泊松方程!泊松方程的右边就是负的速度散度 。 投影部分:求速度的散度 当然, jacobi 迭代因为需要写入 pre 的同时读取 pre ,所以也要用双缓冲。 投影部分:计算未消除的散度 为了评估效果的好坏,额外加一个计算散度方差的核函数,看看是不是无散度(不可压缩流)了。 多重网格法 投影部分:多重网格实现 投影部分:红黑高斯 投影部分:计算残差 投影部分:缩小一倍 投影部分:清零数组 投影部分:扩大一倍 创建与导出 主函数:创建场景 导出 VDB
    0 码力 | 58 页 | 14.90 MB | 1 年前
    3
共 23 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
深入深入浅出MFC现代C++教程高速上手11141720高性性能高性能并行编程优化课件15Hello算法1.11.01.2简体中文简体中文0b50b4繁体繁体中文09
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩