《深入浅出MFC》2/e刚才又把深入浅出MFC step0~step1 的程序看了一次,真的感触良多。酒越陈越香,看老 师您的书,真的是越看越「爽」,而且一定要晚上10:00 以后看,哇,那种感觉真是过瘾。 桃园Shelly 在书局看到您多本书籍,实在忍不住想告诉您我的想法!我是来谢谢您的。怎么说呢?姑且 不论英文能力,看原文书总是没有看中文书来得直接啊!您也知晓的,许多翻译书中的每个 中文字都看得懂,但是整段落就是不知他到底在说啥!因此看到书的作者是您,感觉上就是 在大陆,主要从事交换机系统软件的设计,到了美国,主要从事卫星通信地面站系统软件的 设计。程序设计主要结合C 和Assembly。在大陆,embedded system 多采用Intel 的 processor,在美国,embedded system 多采用Motorola 的processor。所以,我对Intel 8086, 8051 系列及Motorola 68000 系列的assembly 语言比较熟悉,而对framework 有一个程度的了解后再去看侯sir 写的深入 浅出MFC... 保证让你功力大增~~ Rosario.bbs@bbs.ntu.edu.tw:深入浅出MFC 这本比较好~~~不过之前最好买侯老师的多 型与虚拟拟,把C++ 弄清楚。最后看起深入Visual C++ 就会吸收很快。 请问,想要从DOS 跨足到Windows 程序设计有哪些书值得推荐呢? hschin.bbs@bbs.cs.nthu0 码力 | 1009 页 | 11.08 MB | 1 年前3
现代C++ 教程:高速上手C++11/14/17/20. . . . . . . . . . . . . . . 83 6 序言 序言 引言 C++ 是一个用户群体相当大的语言。从 C++98 的出现到 C++11 的正式定稿经历了长达十年多之 久的积累。C++14/17 则是作为对 C++11 的重要补充和优化,C++20 则将这门语言领进了现代化的大 门,所有这些新标准中扩充的特性,给 C++ 这门语言注入了新的活力。那些还在坚持使用传统 向。尽管它的出现并不如 C++11 的分量之重,但它包含了大量小而美的语言与特性(例如结构化绑定), 这些特性的出现再一次修正了我们在 C++ 中的编程范式。 现代 C++ 还为自身的标准库增加了非常多的工具和方法,诸如在语言自身标准的层面上制定了 std::thread,从而支持了并发编程,在不同平台上不再依赖于系统底层的 API,实现了语言层面的跨 平台支持;std::regex 提供了完整的正则表达式支持等等。C++98 码),例如 Linux 系统调用。在现代 C++ 出现之前,大部分人当谈及『C 与 C++ 的区别是什么』时, 普遍除了回答面向对象的类特性、泛型编程的模板特性外,就没有其他的看法了,甚至直接回答『差不 多』,也是大有人在。图 1.2 中的韦恩图大致上回答了 C 和 C++ 相关的兼容情况。 从现在开始,你的脑子里应该树立『C++ 不是 C 的一个超集』这个观念(而且从一开始就不是, 后面的进一步阅读的参考文献中给出了0 码力 | 83 页 | 2.42 MB | 1 年前3
Hello 算法 1.0.0b4 C++版靳宇栋(Krahets) Release 1.0.0b4 2023‑07‑26 序 两年前,我在力扣上分享了《剑指 Offer》系列题解,受到了许多朋友的喜爱与支持。在此期间,我回答了众 多读者的评论问题,其中最常见的一个问题是“如何入门学习算法”。我逐渐也对这个问题产生了浓厚的兴 趣。 两眼一抹黑地刷题似乎是最受欢迎的方法,简单直接且有效。然而,刷题就如同玩“扫雷”游戏,自学能力 轮的重复后,就能将其牢记在心。 3. 搭建知识体系。在学习方面,我们可以阅读算法专栏文章、解题框架和算法教材,以不断丰富知识体 系。在刷题方面,可以尝试采用进阶刷题策略,如按专题分类、一题多解、一解多题等,相关的刷题心 得可以在各个社区找到。 作为一本入门教程,本书内容主要涵盖“第一阶段”,旨在帮助你更高效地展开第二和第三阶段的学习。 Figure 0‑7. 算法学习路线 0.3. 小结 着我们需要在各种 机器上进行测试,而这是不现实的。 展开完整测试非常耗费资源。随着输入数据量的变化,算法会表现出不同的效率。例如,输入数据量较小时, 算法 A 的运行时间可能短于算法 B;而输入数据量较大时,测试结果可能相反。因此,为了得到有说服力的 结论,我们需要测试各种规模的输入数据,这样需要占用大量的计算资源。 理论估算 由于实际测试具有较大的局限性,我们可以考虑仅通过一些计算来评估算法的效率。这种估算方法被称为0 码力 | 343 页 | 27.39 MB | 1 年前3
Hello 算法 1.0.0b5 C++版轮的重复后,就能将其牢记在心。 3. 搭建知识体系。在学习方面,我们可以阅读算法专栏文章、解题框架和算法教材,以不断丰富知识体 系。在刷题方面,可以尝试采用进阶刷题策略,如按专题分类、一题多解、一解多题等,相关的刷题心 得可以在各个社区找到。 如图 0‑7 所示,本书内容主要涵盖“第一阶段”,旨在帮助你更高效地展开第二和第三阶段的学习。 第 0 章 前言 hello‑algo.com 8 图 在各种机器上进行测试,统计平均效率,而这是不现实的。 另一方面,展开完整测试非常耗费资源。随着输入数据量的变化,算法会表现出不同的效率。例如,在输入 数据量较小时,算法 A 的运行时间比算法 B 更少;而输入数据量较大时,测试结果可能恰恰相反。因此,为 了得到有说服力的结论,我们需要测试各种规模的输入数据,而这需要耗费大量的计算资源。 2.1.2 理论估算 由于实际测试具有较大的局限性,我们可以考虑仅 asymptotic complexity analysis」,简称「复杂度分析」。 复杂度分析体现算法运行所需的时间(空间)资源与输入数据大小之间的关系。它描述了随着输入数据大小 的增加,算法执行所需时间和空间的增长趋势。这个定义有些拗口,我们可以将其分为三个重点来理解。 ‧“时间和空间资源”分别对应「时间复杂度 time complexity」和「空间复杂度 space complexity」。 ‧0 码力 | 377 页 | 30.69 MB | 1 年前3
Hello 算法 1.0.0 C++版轮的重复后,就能将其牢记在心。 3. 阶段三:搭建知识体系。在学习方面,我们可以阅读算法专栏文章、解题框架和算法教材,以不断丰富 知识体系。在刷题方面,可以尝试采用进阶刷题策略,如按专题分类、一题多解、一解多题等,相关的 刷题心得可以在各个社区找到。 如图 0‑8 所示,本书内容主要涵盖“阶段一”,旨在帮助你更高效地展开阶段二和阶段三的学习。 第 0 章 前言 hello‑algo.com 9 图 器上进行测试,统计平均效率,而这是不现实的。 另一方面,展开完整测试非常耗费资源。随着输入数据量的变化,算法会表现出不同的效率。例如,在输入 数据量较小时,算法 A 的运行时间比算法 B 短;而在输入数据量较大时,测试结果可能恰恰相反。因此,为 了得到有说服力的结论,我们需要测试各种规模的输入数据,而这需要耗费大量的计算资源。 2.1.2 理论估算 由于实际测试具有较大的局限性,因此我们可以考 asymptotic complexity analysis」,简称「复杂度分析」。 复杂度分析能够体现算法运行所需的时间和空间资源与输入数据大小之间的关系。它描述了随着输入数据大 小的增加,算法执行所需时间和空间的增长趋势。这个定义有些拗口,我们可以将其分为三个重点来理解。 ‧“时间和空间资源”分别对应「时间复杂度 time complexity」和「空间复杂度 space complexity」。 ‧0 码力 | 378 页 | 17.59 MB | 1 年前3
Hello 算法 1.1.0 C++ 版GitHub 仓库。 3. 阶段三:搭建知识体系。在学习方面,我们可以阅读算法专栏文章、解题框架和算法教材,以不断丰富 知识体系。在刷题方面,可以尝试采用进阶刷题策略,如按专题分类、一题多解、一解多题等,相关的 刷题心得可以在各个社区找到。 如图 0‑8 所示,本书内容主要涵盖“阶段一”,旨在帮助你更高效地展开阶段二和阶段三的学习。 第 0 章 前言 hello‑algo.com 9 图 器上进行测试,统计平均效率,而这是不现实的。 另一方面,展开完整测试非常耗费资源。随着输入数据量的变化,算法会表现出不同的效率。例如,在输入 数据量较小时,算法 A 的运行时间比算法 B 短;而在输入数据量较大时,测试结果可能恰恰相反。因此,为 了得到有说服力的结论,我们需要测试各种规模的输入数据,而这需要耗费大量的计算资源。 2.1.2 理论估算 由于实际测试具有较大的局限性,因此我们可以考 为渐近复杂度分析(asymptotic complexity analysis),简称复杂度分析。 复杂度分析能够体现算法运行所需的时间和空间资源与输入数据大小之间的关系。它描述了随着输入数据大 小的增加,算法执行所需时间和空间的增长趋势。这个定义有些拗口,我们可以将其分为三个重点来理解。 ‧“时间和空间资源”分别对应时间复杂度(time complexity)和空间复杂度(space complexity)。 ‧“随0 码力 | 379 页 | 18.47 MB | 1 年前3
Hello 算法 1.0.0b2 C++版轮以上后,往往就能牢记于心了。 3. 搭建知识体系。在学习方面,可以阅读算法专栏文章、解题框架、算法教材,不断地丰富知识体系。在 刷题方面,可以开始采用进阶刷题方案,例如按专题分类、一题多解、一解多题等,相关刷题心得可以 在各个社区中找到。 作为一本入门教程,本书内容主要对应“第一阶段”,致力于帮助你更高效地开展第二、三阶段的学习。 Figure 0‑2. 算法学习路线 0.2.2. 行文风格约定 在各种机 器上展开测试,而这是不现实的。 展开完整测试非常耗费资源。随着输入数据量的大小变化,算法会呈现出不同的效率表现。比如,有可能输入 数据量较小时,算法 A 运行时间短于算法 B ,而在输入数据量较大时,测试结果截然相反。因此,若想要达 到具有说服力的对比结果,那么需要输入各种体量数据,这样的测试需要占用大量计算资源。 理论估算 既然实际测试具有很大的局限性,那么我们是否可以仅通 算法性能。 如果感觉对复杂度分析的概念一知半解,无需担心,后续章节会展开介绍。 2.1.3. 复杂度分析重要性 复杂度分析给出一把评价算法效率的“标尺”,告诉我们执行某个算法需要多少时间和空间资源,也让我们可 以开展不同算法之间的效率对比。 复杂度是个数学概念,对于初学者可能比较抽象,学习难度相对较高。从这个角度出发,其并不适合作为第一 章内容。但是,当我们讨论某个数据结构或者算法的特0 码力 | 197 页 | 15.72 MB | 1 年前3
Hello 算法 1.2.0 简体中文 C++ 版GitHub 仓库。 3. 阶段三:搭建知识体系。在学习方面,我们可以阅读算法专栏文章、解题框架和算法教材,以不断丰富 知识体系。在刷题方面,可以尝试采用进阶刷题策略,如按专题分类、一题多解、一解多题等,相关的 刷题心得可以在各个社区找到。 如图 0‑8 所示,本书内容主要涵盖“阶段一”,旨在帮助你更高效地展开阶段二和阶段三的学习。 第 0 章 前言 www.hello‑algo.com 9 试,统计 平均效率,而这是不现实的。 另一方面,展开完整测试非常耗费资源。随着输入数据量的变化,算法会表现出不同的效率。例如,在输入 数据量较小时,算法 A 的运行时间比算法 B 短;而在输入数据量较大时,测试结果可能恰恰相反。因此,为 了得到有说服力的结论,我们需要测试各种规模的输入数据,而这需要耗费大量的计算资源。 2.1.2 理论估算 由于实际测试具有较大的局限性,因此我们可以考 为渐近复杂度分析(asymptotic complexity analysis),简称复杂度分析。 复杂度分析能够体现算法运行所需的时间和空间资源与输入数据大小之间的关系。它描述了随着输入数据大 小的增加,算法执行所需时间和空间的增长趋势。这个定义有些拗口,我们可以将其分为三个重点来理解。 ‧“时间和空间资源”分别对应时间复杂度(time complexity)和空间复杂度(space complexity)。 ‧“随0 码力 | 379 页 | 18.48 MB | 10 月前3
Hello 算法 1.0.0b1 C++版轮以上后,往往就能牢记于心了。 3. 搭建知识体系。在学习方面,可以阅读算法专栏文章、解题框架、算法教材,不断地丰富知识体系。在 刷题方面,可以开始采用进阶刷题方案,例如按专题分类、一题多解、一解多题等,相关刷题心得可以 在各个社区中找到。 作为一本入门教程,本书内容主要对应“第一阶段”,致力于帮助你更高效地开展第二、三阶段的学习。 Figure 0‑2. 算法学习路线 0.2.2. 行文风格约定 在各种机 器上展开测试,而这是不现实的。 展开完整测试非常耗费资源。随着输入数据量的大小变化,算法会呈现出不同的效率表现。比如,有可能输入 数据量较小时,算法 A 运行时间短于算法 B ,而在输入数据量较大时,测试结果截然相反。因此,若想要达 到具有说服力的对比结果,那么需要输入各种体量数据,这样的测试需要占用大量计算资源。 理论估算 既然实际测试具有很大的局限性,那么我们是否可以仅通 算法性能。 如果感觉对复杂度分析的概念一知半解,无需担心,后续章节会展开介绍。 2.1.3. 复杂度分析重要性 复杂度分析给出一把评价算法效率的“标尺”,告诉我们执行某个算法需要多少时间和空间资源,也让我们可 以开展不同算法之间的效率对比。 复杂度是个数学概念,对于初学者可能比较抽象,学习难度相对较高。从这个角度出发,其并不适合作为第一 章内容。但是,当我们讨论某个数据结构或者算法的特0 码力 | 187 页 | 14.71 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 02 现代 C++ 入门:RAII 内存管理getter/setter 函数分离了声明和定 义,实现在另一个文件时! C++ 思想: RAII ( Resource Acquisition Is Initialization ) 资源获取视为初始化,反之,资源释放视为销毁 C++ 除了用于初始化的构造函数( constructor ) 还包括了用于销毁的解构函数( destructor ) 离开 {} 作用域自动释放 手动释放 RAII Python 等垃圾回收语言不同, C++ 的 解构函数是显式的,离开作用域自动销毁,毫不含 糊(有好处也有坏处,对高性能计算而言利大于 弊) 如果没有解构函数,则每个带有返回的分 支都要手动释放所有之前的资源 : RAII :异常安全( exception-safe ) C++ 标准保证当异常发生时,会调用已创建对象的解构函数 。 因此 C++ 中没有(也不需要) finally 语句。 如果此处不关闭,则可等 不过你得保证那个没指定的有在类成员定 义里写明 {} 初始化,否则有可能会变成内 存里的随机值。 • 顺便一提, C++20 中还可以通过指定名称来跳顺序: 编译器默认生成的构造函数:初始化列表(妙用,解决函数多返回值) • 典型的例子包括,图形学某知名应用中, 可以简化函数具有多个返回值的处理。 • 和 std::tuple 相比,最大的好处是每个属性都有名字 ,不容易搞错。举个例子: • auto0 码力 | 96 页 | 16.28 MB | 1 年前3
共 25 条
- 1
- 2
- 3













