Hello 算法 1.1.0 C++ 版数据量的变化,算法会表现出不同的效率。例如,在输入 数据量较小时,算法 A 的运行时间比算法 B 短;而在输入数据量较大时,测试结果可能恰恰相反。因此,为 了得到有说服力的结论,我们需要测试各种规模的输入数据,而这需要耗费大量的计算资源。 2.1.2 理论估算 由于实际测试具有较大的局限性,因此我们可以考虑仅通过一些计算来评估算法的效率。这种估算方法被称 为渐近复杂度分析(asymptotic expRecur(n - 1) + expRecur(n - 1) + 1; } 第 2 章 复杂度分析 hello‑algo.com 37 指数阶增长非常迅速,在穷举法(暴力搜索、回溯等)中比较常见。对于数据规模较大的问题,指数阶是不 可接受的,通常需要使用动态规划或贪心算法等来解决。 5. 对数阶 ?(log ?) 与指数阶相反,对数阶反映了“每轮缩减到一半”的情况。设输入数据大小为 ? ,由于每轮缩减到一半,因 试环境的影响,且会耗费大量计算资源。 第 2 章 复杂度分析 hello‑algo.com 49 ‧ 复杂度分析可以消除实际测试的弊端,分析结果适用于所有运行平台,并且能够揭示算法在不同数据 规模下的效率。 时间复杂度 ‧ 时间复杂度用于衡量算法运行时间随数据量增长的趋势,可以有效评估算法效率,但在某些情况下可 能失效,如在输入的数据量较小或时间复杂度相同时,无法精确对比算法效率的优劣。0 码力 | 379 页 | 18.47 MB | 1 年前3
Hello 算法 1.0.0 C++版数据量的变化,算法会表现出不同的效率。例如,在输入 数据量较小时,算法 A 的运行时间比算法 B 短;而在输入数据量较大时,测试结果可能恰恰相反。因此,为 了得到有说服力的结论,我们需要测试各种规模的输入数据,而这需要耗费大量的计算资源。 2.1.2 理论估算 由于实际测试具有较大的局限性,因此我们可以考虑仅通过一些计算来评估算法的效率。这种估算方法被称 为「渐近复杂度分析 asymptotic expRecur(n - 1) + expRecur(n - 1) + 1; } 第 2 章 复杂度分析 hello‑algo.com 37 指数阶增长非常迅速,在穷举法(暴力搜索、回溯等)中比较常见。对于数据规模较大的问题,指数阶是不 可接受的,通常需要使用动态规划或贪心算法等来解决。 5. 对数阶 ?(log ?) 与指数阶相反,对数阶反映了“每轮缩减到一半”的情况。设输入数据大小为 ? ,由于每轮缩减到一半,因 试环境的影响,且会耗费大量计算资源。 第 2 章 复杂度分析 hello‑algo.com 49 ‧ 复杂度分析可以消除实际测试的弊端,分析结果适用于所有运行平台,并且能够揭示算法在不同数据 规模下的效率。 时间复杂度 ‧ 时间复杂度用于衡量算法运行时间随数据量增长的趋势,可以有效评估算法效率,但在某些情况下可 能失效,如在输入的数据量较小或时间复杂度相同时,无法精确对比算法效率的优劣。0 码力 | 378 页 | 17.59 MB | 1 年前3
Hello 算法 1.0.0b4 C++版展开完整测试非常耗费资源。随着输入数据量的变化,算法会表现出不同的效率。例如,输入数据量较小时, 算法 A 的运行时间可能短于算法 B;而输入数据量较大时,测试结果可能相反。因此,为了得到有说服力的 结论,我们需要测试各种规模的输入数据,这样需要占用大量的计算资源。 理论估算 由于实际测试具有较大的局限性,我们可以考虑仅通过一些计算来评估算法的效率。这种估算方法被称为 「复杂度分析 Complexity Analysis」或「渐近复杂度分析 维度。 ‧ 我们可以通过实际测试来评估算法效率,但难以消除测试环境的影响,且会耗费大量计算资源。 ‧ 复杂度分析可以克服实际测试的弊端,分析结果适用于所有运行平台,并且能够揭示算法在不同数据 规模下的效率。 时间复杂度 ‧ 时间复杂度用于衡量算法运行时间随数据量增长的趋势,可以有效评估算法效率,但在某些情况下可 能失效,如在输入数据量较小或时间复杂度相同时,无法精确对比算法效率的优劣。 解)。 Figure 12‑1. 归并排序的分治策略 12.1.1. 如何判断分治问题 一个问题是否适合使用分治解决,通常可以参考以下几个判断依据: 1. 问题可以被分解:原问题可以被分解成规模更小、类似的子问题,以及能够以相同方式递归地进行划分。 2. 子问题是独立的:子问题之间是没有重叠的,互相没有依赖,可以被独立解决。 3. 子问题的解可以被合并:原问题的解通过合并子问题的解得来。0 码力 | 343 页 | 27.39 MB | 1 年前3
Hello 算法 1.0.0b5 C++版数据量的变化,算法会表现出不同的效率。例如,在输入 数据量较小时,算法 A 的运行时间比算法 B 更少;而输入数据量较大时,测试结果可能恰恰相反。因此,为 了得到有说服力的结论,我们需要测试各种规模的输入数据,而这需要耗费大量的计算资源。 2.1.2 理论估算 由于实际测试具有较大的局限性,我们可以考虑仅通过一些计算来评估算法的效率。这种估算方法被称为 「渐近复杂度分析 asymptotic 1) return 1; return expRecur(n - 1) + expRecur(n - 1) + 1; } 指数阶增长非常迅速,在穷举法(暴力搜索、回溯等)中比较常见。对于数据规模较大的问题,指数阶是不 可接受的,通常需要使用动态规划或贪心等算法来解决。 5. 对数阶 ?(log ?) 与指数阶相反,对数阶反映了“每轮缩减到一半”的情况。设输入数据大小为 ? ,由于每轮缩减到一半,因 试环境的影响,且会耗费大量计算资源。 第 2 章 复杂度分析 hello‑algo.com 47 ‧ 复杂度分析可以克服实际测试的弊端,分析结果适用于所有运行平台,并且能够揭示算法在不同数据 规模下的效率。 时间复杂度 ‧ 时间复杂度用于衡量算法运行时间随数据量增长的趋势,可以有效评估算法效率,但在某些情况下可 能失效,如在输入的数据量较小或时间复杂度相同时,无法精确对比算法效率的优劣。0 码力 | 377 页 | 30.69 MB | 1 年前3
Hello 算法 1.2.0 简体中文 C++ 版数据量的变化,算法会表现出不同的效率。例如,在输入 数据量较小时,算法 A 的运行时间比算法 B 短;而在输入数据量较大时,测试结果可能恰恰相反。因此,为 了得到有说服力的结论,我们需要测试各种规模的输入数据,而这需要耗费大量的计算资源。 2.1.2 理论估算 由于实际测试具有较大的局限性,因此我们可以考虑仅通过一些计算来评估算法的效率。这种估算方法被称 为渐近复杂度分析(asymptotic hello‑algo.com 37 return expRecur(n - 1) + expRecur(n - 1) + 1; } 指数阶增长非常迅速,在穷举法(暴力搜索、回溯等)中比较常见。对于数据规模较大的问题,指数阶是不 可接受的,通常需要使用动态规划或贪心算法等来解决。 5. 对数阶 ?(log ?) 与指数阶相反,对数阶反映了“每轮缩减到一半”的情况。设输入数据大小为 ? ,由于每轮缩减到一半,因 影响,且会耗费大量计算资源。 第 2 章 复杂度分析 www.hello‑algo.com 49 ‧ 复杂度分析可以消除实际测试的弊端,分析结果适用于所有运行平台,并且能够揭示算法在不同数据 规模下的效率。 时间复杂度 ‧ 时间复杂度用于衡量算法运行时间随数据量增长的趋势,可以有效评估算法效率,但在某些情况下可 能失效,如在输入的数据量较小或时间复杂度相同时,无法精确对比算法效率的优劣。0 码力 | 379 页 | 18.48 MB | 10 月前3
《深入浅出MFC》2/e领域,直接以application framework 开发Windows 程序,我一直抱持怀疑的态度。虽然有了MFC(或任何其它的application framework), 你可以继承一整组类别,从而快速得到一个颇具规模的程序,但是Windows 程序的运作 本质(Message Based,Event Driven)从来不曾也不会改变。如果你不能了解其髓,空有 其皮其肉或其骨,是不可能有所精进的,即使能够操控 Framework 带来的革命精神是,程序模型已经存在,程序员只要依个人需求 加料就好:在衍生类别中改写虚拟函数,或在衍生类别中加上新的成员函数。这很像你 在火锅拼盘中依个人口味加盐添醋。 由于程序代码的初期规模十分一致(什么样风格的程序应该使用什么类别,是一成不变 的),而修改程序以符合私人需要的基本动作也很一致(我是指像「开辟一个空的骨干 函数」这种事情),你动不了Application Framework Application Framework, Class Library, GUI toolkit 一般而言,Class Library 和GUI toolkit 比Application Framework 的规模小,定位也 没那么高阶宏观。Class Library 可以定义为「一组具备对象导向性质的类别,它们使 应用程序的某些功能实现起来容易一些,这些功能包括数值运算与数据结构、绘图、 内存管理等等0 码力 | 1009 页 | 11.08 MB | 1 年前3
面向亿行 C/C++ 代码的静态分析系统设计及实践-肖枭增量分析减少不适 • 软件工程师一天被邀请进行多次 代码评审,这些都不是他们自身 的KPI • 一旦工期紧996,人工评审容易 变成走形式 • 任务挂着还容易造成工程师焦虑 降低工程师劳动强度 大规模C/C++静态代码评审系统搭建 数千个活跃开发 的代码仓库 每天上千次代码 评审请求 平均每次代码评 审小于50分钟 • 需要编译C/C++代码 • 使用了定理证明器求解可 行路径(精确,耗时) 行路径(精确,耗时) • 能跨函数分析 • 能处理指针 使用有深度的代码分析器 做到快速和准确 用尽量少机器完成一天几千次分析 每次分析10分钟要能结束 控制误报并建立反馈和改进机制 挑战:超大规模代码仓库 项目平均40分钟单机编译时间 项目平均编译代码量超百万行 编译的价值 C/C++代码逻辑受编 译参数深度控制 源代码索引和统计 提升开源静态分析工 具分析质量 提高分析质量0 码力 | 39 页 | 6.88 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 16 现代 CMake 模块化项目管理指南Qt5Config.cmake 文件包含所有相关信息(类似于 nodejs 的 package.json ),比你单独的一个个去找动态库文件要灵活的多。 • 包配置文件由第三方库的作者( Qt 的开发团队)提供,在这个库安装时( Qt 的安装程序 或 apt install 等)会自动放到 /usr/lib/cmake/XXX/XXXConfig.cmake 这个路径(其中 XXX 是包名),供 CMake 呢?就冲突了。所以“单次有效”虽然劳驾您的高抬贵手每次命令行打一下 - DQt5_DIR=”D:/Qt5” ,但人家也打一下 -DQt5_DIR=”E:/Qt5” ,就没有冲突,各美其美,美美与 共,赋能多元化社会,下沉团队合作发力面。 • 实际上只要你不删 build ,不需要每次都 -DQt5_DIR 一下, CMake 具有“记忆”功能。 • cmake -B build -DQt5_DIR=D:/Qt50 码力 | 56 页 | 6.87 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 01 学 C++ 从 CMake 学起7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: reduce , scan ,矩阵乘法等 10.存储大规模三维数据的关键:稀疏数据结构 11.物理仿真实战:邻居搜索表实现 pbf 流体求解 12.C++ 在 ZENO 中的工程实践:从 primitive 说起 13.结业典礼:总结所学知识与优秀作业点评0 码力 | 32 页 | 11.40 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 04 从汇编角度看编译器优化7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: reduce , scan ,矩阵乘法等 10.存储大规模三维数据的关键:稀疏数据结构 11.物理仿真实战:邻居搜索表实现 pbf 流体求解 12.C++ 在 ZENO 中的工程实践:从 primitive 说起 13.结业典礼:总结所学知识与优秀作业点评0 码力 | 108 页 | 9.47 MB | 1 年前3
共 14 条
- 1
- 2













