积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(310)Python(310)Scrapy(60)Django(46)Celery(45)PyWebIO(38)Tornado(20)Conda(16)ORM(14)PyMuPDF(6)

语言

全部英语(298)中文(简体)(10)英语(1)

格式

全部PDF文档 PDF(164)其他文档 其他(145)DOC文档 DOC(1)
 
本次搜索耗时 0.087 秒,为您找到相关结果约 310 个.
  • 全部
  • 后端开发
  • Python
  • Scrapy
  • Django
  • Celery
  • PyWebIO
  • Tornado
  • Conda
  • ORM
  • PyMuPDF
  • 全部
  • 英语
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 9 盛泳潘 When Knowledge Graph meet Python

    KG引领KE复兴  Knowledge graph is a large-scale semantic network consisting of entities and concepts as well as the semantic relationships among them • Large scale • Semantically rich • Friendly structure Preliminaries 本页PPT借鉴于复旦大学肖仰华老师 《Data-driven Approaches for Large-scale Knowledge Graph Construction》 Knowledge Graph – KG引领KE复兴  Common large-scale KG Preliminaries 名称 开始时间 依赖资源 规模#(实体/概念/关系/ 事实) Cyc/OpenCyc Data Management Domain-specific Knowledge Graph Construction 1 Data-driven approaches for large-scale KG construction The Pipeline of Knowledge Graph Construction by Data-driven manner Data-driven
    0 码力 | 57 页 | 1.98 MB | 1 年前
    3
  • pdf文档 2 使用Python训练和部署低精度模型 张校捷

    Define static loss scale loss_scale_value = 1024 loss_scale = tf.train.experimental.FixedLossScale(loss_scale_value) opt = tf.train.experimental.MixedPrecisionLossScaleOptimizer(opt, loss_scale) # Define dynamic dynamic loss scale loss_scale = tf.train.experimental.DynamicLossScale( initial_loss_scale = loss_scale_value, increment_period = 2000, multiplier = 2.0, ) opt = tf.train.experimental.MixedPrecisionL MixedPrecisionLossScaleOptimizer(opt, loss_scale) TensorFlow自动混合精度(Automatic Mixed Precision,AMP) 1.设置环境变量 TF_ENABLE_AUTO_MIXED_PRECISION=“1” 2.在代码中手动开启(1和2选项互相冲突,同时设置会报错) # Define optimizer opt = tf.train.AdamOptimizer()
    0 码力 | 24 页 | 981.45 KB | 1 年前
    3
  • pdf文档 MuPDF 1.25.0 Documentation

    the zoom and rotation desired. */ /* The default resolution without scaling is 72 dpi. */ ctm = fz_scale(zoom / 100, zoom / 100); ctm = fz_pre_rotate(ctm, rotate); /* Render page to an RGB pixmap. */ fz_try(ctx) left, fz_matrix right); Concat two matrices and returns a new matrix. fz_matrix fz_scale(float sx, float sy); Scale. fz_matrix fz_shear(float sx, float sy); Shear. fz_matrix fz_rotate(float degrees); fz_unpack_tile(fz_context *ctx, fz_pixmap *dst, unsigned char *src, int n, int depth, size_t stride, int scale); Unpack pixel values from source data to fill in the pixmap samples. n is the number of samples
    0 码力 | 259 页 | 1.11 MB | 8 月前
    3
  • pdf文档 MuPDF 1.23.0 Documentation

    the zoom and rotation desired. */ /* The default resolution without scaling is 72 dpi. */ ctm = fz_scale(zoom / 100, zoom / 100); ctm = fz_pre_rotate(ctm, rotate); /* Render page to an RGB pixmap. */ fz_try(ctx) left, fz_matrix right); Concat two matrices and returns a new matrix. fz_matrix fz_scale(float sx, float sy); Scale. fz_matrix fz_shear(float sx, float sy); Shear. fz_matrix fz_rotate(float degrees); fz_unpack_tile(fz_context *ctx, fz_pixmap *dst, unsigned char *src, int n, int depth, size_t stride, int scale); Unpack pixel values from source data to fill in the pixmap samples. n is the number of samples
    0 码力 | 245 页 | 817.74 KB | 8 月前
    3
  • pdf文档 PyMuPDF 1.24.2 Documentation

    height / 2. # rect middle means y = 0 x_step = rect.width / 360 # rect width means 360 degrees y_scale = rect.height / 2. # rect height means 2 sin_points = [] # sine values go here cos_points = [] # * deg) # sine p = (x_coord, y * y_scale + first_y) # corresponding point sin_points.append(p) # append y = -math.cos(x * deg) # cosine p = (x_coord, y * y_scale + first_y) # corresponding point cos_points mytime() # start a timer filename = sys.argv[1] mat = fitz.Matrix(0.2, 0.2) # the rendering matrix: scale down to 20% cpu = cpu_count() # make vectors of arguments for the processes vectors = [(i, cpu,
    0 码力 | 565 页 | 6.84 MB | 1 年前
    3
  • pdf文档 MuPDF 1.24.0 Documentation

    the zoom and rotation desired. */ /* The default resolution without scaling is 72 dpi. */ ctm = fz_scale(zoom / 100, zoom / 100); ctm = fz_pre_rotate(ctm, rotate); /* Render page to an RGB pixmap. */ fz_try(ctx) left, fz_matrix right); Concat two matrices and returns a new matrix. fz_matrix fz_scale(float sx, float sy); Scale. fz_matrix fz_shear(float sx, float sy); Shear. fz_matrix fz_rotate(float degrees); fz_unpack_tile(fz_context *ctx, fz_pixmap *dst, unsigned char *src, int n, int depth, size_t stride, int scale); Unpack pixel values from source data to fill in the pixmap samples. n is the number of samples
    0 码力 | 249 页 | 830.15 KB | 8 月前
    3
  • pdf文档 MuPDF 1.22.0 Documentation

    the zoom and rotation desired. */ /* The default resolution without scaling is 72 dpi. */ ctm = fz_scale(zoom / 100, zoom / 100); ctm = fz_pre_rotate(ctm, rotate); /* Render page to an RGB pixmap. */ fz_try(ctx) [a,b,c,d,e,f]. Properties Identity The identity matrix, short hand for [1,0,0,1,0,0]. Methods Scale(sx, sy) Returns a scaling matrix, short hand for [sx,0,0,sy,0,0]. Returns [a,b,c,d,e,f]. Translate(tx MuPDF Documentation, Release 1.21.2 Text state • op_Tc(charSpace) • op_Tw(wordSpace) • op_Tz(scale) • op_TL(leading) • op_Tf(name, size) • op_Tr(render) • op_Ts(rise) Text positioning • op_Td(tx
    0 码力 | 175 页 | 698.87 KB | 8 月前
    3
  • pdf文档 Conda 23.7.x Documentation

    _get_field(cant_be_number, raw_string, convert_to, ...) _to_decimal_string(ticks) _hz_short_to_full(ticks, scale) continues on next page 246 Chapter 5. Developer guide conda, Release 23.7.4.dev7 Table 10 – continued continued from previous page _hz_friendly_to_full(hz_string) _hz_short_to_friendly(ticks, scale) _to_friendly_bytes(input) _friendly_bytes_to_int(friendly_bytes) _parse_cpu_brand_string(cpu_string) *field_names) _to_decimal_string(ticks) _hz_short_to_full(ticks, scale) _hz_friendly_to_full(hz_string) _hz_short_to_friendly(ticks, scale) _to_friendly_bytes(input) _friendly_bytes_to_int(friendly_bytes)
    0 码力 | 795 页 | 4.91 MB | 8 月前
    3
  • pdf文档 Mypy 1.8.0 Documentation

    – Carl Meyer: Type Checked Python in the Real World (PyCon 2018) – Greg Price: Clearer Code at Scale: Static Types at Zulip and Dropbox (PyCon 2018) • Look at solutions to common issues with mypy if typing import TypeVar T = TypeVar('T', bound='Shape') class Shape: def set_scale(self: T, scale: float) -> T: self.scale = scale return self class Circle(Shape): def set_radius(self, r: float) -> 'Circle': 'Square': self.width = w return self circle: Circle = Circle().set_scale(0.5).set_radius(2.7) square: Square = Square().set_scale(0.5).set_width(3.2) Without using generic self, the last two lines could
    0 码力 | 234 页 | 902.89 KB | 1 年前
    3
  • epub文档 Mypy 1.10.0+dev Documentation

    Real World [https://www.youtube.com/watch?v=pMgmKJyWKn8] (PyCon 2018) Greg Price: Clearer Code at Scale: Static Types at Zulip and Dropbox [https://www.youtube.com/watch?v=0c46YHS3RY8] (PyCon 2018) Look import TypeVar T = TypeVar('T', bound='Shape') class Shape: def set_scale(self: T, scale: float) -> T: self.scale = scale return self class Circle(Shape): def set_radius(self, r: self.width = w return self circle: Circle = Circle().set_scale(0.5).set_radius(2.7) square: Square = Square().set_scale(0.5).set_width(3.2) Without using generic self, the last two lines could
    0 码力 | 318 页 | 270.84 KB | 1 年前
    3
共 310 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 31
前往
页
相关搜索词
盛泳WhenKnowledgeGraphmeetPython使用训练部署精度模型张校MuPDF1.25Documentation1.23PyMuPDF1.241.22Conda23.7Mypy1.81.10dev
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩