积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(276)Python(276)Jupyter(61)Scrapy(56)Django(51)Celery(51)ORM(14)Conda(6)PyMuPDF(5)Flask(2)

语言

全部英语(261)中文(简体)(12)英语(1)

格式

全部PDF文档 PDF(150)其他文档 其他(126)
 
本次搜索耗时 0.074 秒,为您找到相关结果约 276 个.
  • 全部
  • 后端开发
  • Python
  • Jupyter
  • Scrapy
  • Django
  • Celery
  • ORM
  • Conda
  • PyMuPDF
  • Flask
  • 全部
  • 英语
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 8 4 Deep Learning with Python 费良宏

    文的自动分类 半监督学习 - 介于监督学习和无监督学习之间,算法: Graph Inference 或者Laplacian SVM 强化学习- 通过观察来学习做成如何的动作, 算法:Q-Learning以及时间差学习 机器学习- 方法及流程 输入特征选择 – 基于什么进行预测 目标 – 预测什么 预测功能 – 回归、聚类、降维... Xn -> F(xn) -> T(x) 机器学习- (NYU,2002), Facebook AI, Google Deepmind Theano (University of Montreal, ~2010), 学院派 Kersa, “Deep Learning library for Theano and TensorFlow” Caffe (Berkeley),卷积神经网络,贾扬清 TensorFlow (Google) Spark MLLib
    0 码力 | 49 页 | 9.06 MB | 1 年前
    3
  • pdf文档 9 盛泳潘 When Knowledge Graph meet Python

    Data + Machine Learning[R1] + Powerful Computation[R2] • 完全意义上的自下而上的方式 • 从海量的数据中去挖掘异构、动态、碎片化的知识 e.g., 从Web corpora、搜索日志等都可挖掘出有价值的知识 R1, http://www.erogol.com/brief-history-machine- learning/ R2, https://openai Pipeline of Knowledge Graph Construction by Data-driven manner Figure 1: Data-driven KG construction techniques 刘峤,李杨等人, 知识图谱构建技术综述, 计算机研究与发展, 53 (3),2016  Data acquisition • 结构化的数据(工业界常用) • 半结构化的数据(工业界常用)
    0 码力 | 57 页 | 1.98 MB | 1 年前
    3
  • pdf文档 Mypy 1.8.0 Documentation

    don’t want to read lots of documentation before getting started, here are some pointers to quick learning resources: • Read the mypy cheatsheet. • Read Using mypy with an existing codebase if you have 56 Chapter 1. Contents Mypy Documentation, Release 1.8.0 You can use different type narrowing techniques to narrow object to a more specific type (subtype) such as int. Type narrowing is not needed with (values with type Any). 1.11 Type narrowing This section is dedicated to several type narrowing techniques which are supported by mypy. Type narrowing is when you convince a type checker that a broader
    0 码力 | 234 页 | 902.89 KB | 1 年前
    3
  • pdf文档 Objeet Oriented Python Tutorial

    other words, it means functionally directed towards modelling objects. This is one of the many techniques used for modelling complex systems by describing a collection of interacting objects via their Python environment on your local computer. Prerequisites and Toolkits Before you proceed with learning further on Python, we suggest you to check whether the following prerequisites are met:  13 Screenshot Choosing a Text Editor You may not always need an IDE. For tasks such as learning to code with Python or Arduino, or when working on a quick script in shell script to help you automate
    0 码力 | 111 页 | 3.32 MB | 1 年前
    3
  • epub文档 Mypy 1.10.0+dev Documentation

    don’t want to read lots of documentation before getting started, here are some pointers to quick learning resources: Read the mypy cheatsheet. Read Using mypy with an existing codebase if you have a significant switch to using Any if you get a type checker complaint. You can use different type narrowing techniques to narrow object [https://docs.python.org/3/library/functions.html#object] to a more specific type values (values with type Any). Type narrowing This section is dedicated to several type narrowing techniques which are supported by mypy. Type narrowing is when you convince a type checker that a broader
    0 码力 | 318 页 | 270.84 KB | 1 年前
    3
  • epub文档 Mypy 1.8.0 Documentation

    don’t want to read lots of documentation before getting started, here are some pointers to quick learning resources: Read the mypy cheatsheet. Read Using mypy with an existing codebase if you have a significant switch to using Any if you get a type checker complaint. You can use different type narrowing techniques to narrow object [https://docs.python.org/3/library/functions.html#object] to a more specific type values (values with type Any). Type narrowing This section is dedicated to several type narrowing techniques which are supported by mypy. Type narrowing is when you convince a type checker that a broader
    0 码力 | 318 页 | 271.55 KB | 1 年前
    3
  • pdf文档 Mypy 1.10.0+dev Documentation

    don’t want to read lots of documentation before getting started, here are some pointers to quick learning resources: • Read the mypy cheatsheet. • Read Using mypy with an existing codebase if you have switch to using Any if you get a type checker complaint. You can use different type narrowing techniques to narrow object to a more specific type (subtype) such as int. Type narrowing is not needed with (values with type Any). 1.11 Type narrowing This section is dedicated to several type narrowing techniques which are supported by mypy. Type narrowing is when you convince a type checker that a broader
    0 码力 | 234 页 | 913.89 KB | 1 年前
    3
  • pdf文档 peewee Documentation Release 3.3.0

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 1.11 Performance Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 1.12 Transactions == join_query.c.id # Becomes: (t1."parent_id" = "jq"."id") 1.11 Performance Techniques This section outlines some techniques for improving performance when using peewee. 1.11.1 Avoiding N+1 queries The optimizations employed by the database when joining or executing a subquery. 1.11. Performance Techniques 105 peewee Documentation, Release 3.3.0 Peewee provides several APIs for mitigating N+1 query
    0 码力 | 280 页 | 1.02 MB | 1 年前
    3
  • epub文档 peewee Documentation Release 3.0.0

    Keys Traversing foreign keys Joining tables Implementing Many to Many Self-joins Performance Techniques Avoiding N+1 queries Iterating over lots of rows Speeding up Bulk Inserts Transactions Context parent == join_query.c.id # Becomes: (t1."parent_id" = "jq"."id") Performance Techniques This section outlines some techniques for improving performance when using peewee. Avoiding N+1 queries The term query. Note.delete().where(Note.person_id.in_(foo_people)).execute() More If you’re interested in learning more, check out the project source code [https://github.com/coleifer/peewee]. Hacks Collected
    0 码力 | 319 页 | 361.50 KB | 1 年前
    3
  • epub文档 peewee Documentation Release 3.6.0

    pragmas=(('foreign_keys', 'on'),) when you instantiate SqliteDatabase. Performing simple joins As an exercise in learning how to perform joins with Peewee, let’s write a query to print out all the tweets by “huey”. To classes used to describe a SQL AST, see the query builder API documentation. If you’re interested in learning more, you can also check out the project source code [https://github.com/coleifer/peewee]. Hacks group. For a thorough discuss of various techniques, check out my blog post Querying the top item by group with Peewee ORM [http://charlesleifer.com/blog/techniques-for-querying-lists-of- objects-and-de
    0 码力 | 377 页 | 399.12 KB | 1 年前
    3
共 276 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 28
前往
页
相关搜索词
DeepLearningwithPython费良宏盛泳WhenKnowledgeGraphmeetMypy1.8DocumentationObjeetOrientedTutorial1.10devpeeweeRelease3.33.03.6
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩