Linux Docker MessUbuntu启动流程分析 n 采用Upstart方式启动的服务则在/etc/init/目录中有属于自己的一份配置文件,终端 下键入: initctl list Virtualization & Docker Wang Xiaodong Virtualization In computing, virtualization refers to the act of creating a virtual Since then, the meaning of the term has broadened. Related Products n Vmware n Virtualbox Docker Docker is an open platform for building, shipping and running distributed applications. It gives programmers modern applications. Docker 简单的说Docker是一个构建在LXC之上的,基于进程容器(Process Container)的轻量 级VM解决方案。 Docker Docker的初衷是将各种应用程序和他们所依赖的运行环境打包成标准的container/image,进 而发布到不同的平台上运行。 Docker Why Docker? n 应用环境管理复杂 n 云计算时代的到来0 码力 | 77 页 | 7.40 MB | 1 年前3
Nacos架构&原理
Nacos 前端设计 117 Nacos 性能报告 122 Nacos Naming 大规模测试报告 122 Nacos ⽣态 130 Nacos Spring 生态 130 Nacos Docker & Kubernetes 生态 137 Nacos 服务网格生态 148 Nacos Golang 生态 163 Nacos C# 生态 169 Nacos-Sync 简介 175 Nacos Nacos 生态 Nacos Docker & Kubernetes ⽣态 简介 nacos-docker 和 nacos-k8s 是 Nacos 开发团队为支持用户容器化衍生的项目。其本质是为了帮 助用户方便快捷的通过官方镜像在 Docker 或者 Kubernetes 进行部署。 Docker 使用 注意:在写本文的当下, Nacos 官方 docker 镜像并不支持在 ARM 架构的机器上运行 架构的机器上运行,比如 Macb ook Pro M1(目前正在推进解决中) 单机启动 打开终端, 输入以下命令: docker run --name nacos-quick -e MODE=standalone -p 8848:8848 -p 9848:9848 -d nacos/nacos-server:2.0.3 执行完命令, ⼀个单机版的 Nacos 就已经启动完成,其中 8848 是0 码力 | 326 页 | 12.83 MB | 10 月前3
Hello 算法 1.0.0b1 Java版updateHeight(node); updateHeight(child); // 返回旋转后子树的根结点 return child; } Case 2 ‑ 左旋 类似地,如果将取上述失衡二叉树的“镜像”,那么则需要「左旋」操作。 7. 树 hello‑algo.com 115 Figure 7‑27. 左旋操作 同理,若结点 child 本身有左子结点(记为 grandChild ),则需要在「左旋」中添加一步:将 ),则需要在「左旋」中添加一步:将 grandChild 作为 node 的右子结点。 Figure 7‑28. 有 grandChild 的左旋操作 观察发现,「左旋」和「右旋」操作是镜像对称的,两者对应解决的两种失衡情况也是对称的。根据对称性,我 们可以很方便地从「右旋」推导出「左旋」。具体地,只需将「右旋」代码中的把所有的 left 替换为 right 、 所有的 right 替换为 left ,单一使用左旋或右旋都无法使子树恢复平衡,此时需要「先左旋后右旋」,即先对 child 执行「左旋」,再对 node 执行「右旋」。 Figure 7‑29. 先左旋后右旋 Case 4 ‑ 先右后左 同理,取以上失衡二叉树的镜像,则需要「先右旋后左旋」,即先对 child 执行「右旋」,然后对 node 执行「左 旋」。 7. 树 hello‑algo.com 117 Figure 7‑30. 先右旋后左旋 旋转的选择0 码力 | 186 页 | 14.71 MB | 1 年前3
Hello 算法 1.0.0b2 Java版updateHeight(node); updateHeight(child); // 返回旋转后子树的根结点 return child; } Case 2 ‑ 左旋 类似地,如果将取上述失衡二叉树的“镜像”,那么则需要「左旋」操作。 7. 树 hello‑algo.com 116 Figure 7‑27. 左旋操作 同理,若结点 child 本身有左子结点(记为 grandChild ),则需要在「左旋」中添加一步:将 ),则需要在「左旋」中添加一步:将 grandChild 作为 node 的右子结点。 Figure 7‑28. 有 grandChild 的左旋操作 观察发现,「左旋」和「右旋」操作是镜像对称的,两者对应解决的两种失衡情况也是对称的。根据对称性,我 们可以很方便地从「右旋」推导出「左旋」。具体地,只需将「右旋」代码中的把所有的 left 替换为 right 、 所有的 right 替换为 left ,单一使用左旋或右旋都无法使子树恢复平衡,此时需要「先左旋后右旋」,即先对 child 执行「左旋」,再对 node 执行「右旋」。 Figure 7‑29. 先左旋后右旋 Case 4 ‑ 先右后左 同理,取以上失衡二叉树的镜像,则需要「先右旋后左旋」,即先对 child 执行「右旋」,然后对 node 执行「左 旋」。 7. 树 hello‑algo.com 118 Figure 7‑30. 先右旋后左旋 旋转的选择0 码力 | 197 页 | 15.72 MB | 1 年前3
Hello 算法 1.0.0b4 Java版updateHeight(node); updateHeight(child); // 返回旋转后子树的根节点 return child; } 左旋 相应的,如果考虑上述失衡二叉树的“镜像”,则需要执行「左旋」操作。 7. 树 hello‑algo.com 139 Figure 7‑28. 左旋操作 同理,若节点 child 本身有左子节点(记为 grandChild ),则需要在「左旋」中添加一步:将 ),则需要在「左旋」中添加一步:将 grandChild 作 为 node 的右子节点。 Figure 7‑29. 有 grandChild 的左旋操作 可以观察到,右旋和左旋操作在逻辑上是镜像对称的,它们分别解决的两种失衡情况也是对称的。基于对称 性,我们可以轻松地从右旋的代码推导出左旋的代码。具体地,只需将「右旋」代码中的把所有的 left 替换 为 right ,将所有的 right 替换为 3,仅使用左旋或右旋都无法使子树恢复平衡。此时需要先左旋后右旋,即先对 child 执行「左旋」,再对 node 执行「右旋」。 Figure 7‑30. 先左旋后右旋 先右旋后左旋 同理,对于上述失衡二叉树的镜像情况,需要先右旋后左旋,即先对 child 执行「右旋」,然后对 node 执行 「左旋」。 7. 树 hello‑algo.com 141 Figure 7‑31. 先右旋后左旋 旋转的选择0 码力 | 342 页 | 27.39 MB | 1 年前3
Hello 算法 1.1.0 Java版updateHeight(node); updateHeight(child); // 返回旋转后子树的根节点 return child; } 2. 左旋 相应地,如果考虑上述失衡二叉树的“镜像”,则需要执行图 7‑28 所示的“左旋”操作。 第 7 章 树 hello‑algo.com 163 图 7‑28 左旋操作 同理,如图 7‑29 所示,当节点 child 有左子节点(记为 grand_child )时,需要在左旋中添加一步:将 grand_child 作为 node 的右子节点。 图 7‑29 有 grand_child 的左旋操作 可以观察到,右旋和左旋操作在逻辑上是镜像对称的,它们分别解决的两种失衡情况也是对称的。基于对称 性,我们只需将右旋的实现代码中的所有的 left 替换为 right ,将所有的 right 替换为 left ,即可得到左 旋的实现代码: ,仅使用左旋或右旋都无法使子树恢复平衡。此时需要先对 child 执行“左旋”, 再对 node 执行“右旋”。 图 7‑30 先左旋后右旋 4. 先右旋后左旋 如图 7‑31 所示,对于上述失衡二叉树的镜像情况,需要先对 child 执行“右旋”,再对 node 执行“左旋”。 图 7‑31 先右旋后左旋 第 7 章 树 hello‑algo.com 165 5. 旋转的选择 图 7‑32 展0 码力 | 378 页 | 18.47 MB | 1 年前3
Hello 算法 1.0.0b5 Java版updateHeight(node); updateHeight(child); // 返回旋转后子树的根节点 return child; } 2. 左旋 相应的,如果考虑上述失衡二叉树的“镜像”,则需要执行图 7‑28 所示的“左旋”操作。 第 7 章 树 hello‑algo.com 159 图 7‑28 左旋操作 同理,如图 7‑29 所示,当节点 child 有左子节点(记为 grandChild )时,需要在左旋中添加一步:将 grandChild 作为 node 的右子节点。 图 7‑29 有 grandChild 的左旋操作 可以观察到,右旋和左旋操作在逻辑上是镜像对称的,它们分别解决的两种失衡情况也是对称的。基于对称 性,我们只需将右旋的实现代码中的所有的 left 替换为 right ,将所有的 right 替换为 left ,即可得到左 旋的实现代码。 ,仅使用左旋或右旋都无法使子树恢复平衡。此时需要先对 child 执行“左旋”, 再对 node 执行“右旋”。 图 7‑30 先左旋后右旋 4. 先右旋后左旋 如图 7‑31 所示,对于上述失衡二叉树的镜像情况,需要先对 child 执行“右旋”,然后对 node 执行“左旋”。 第 7 章 树 hello‑algo.com 161 图 7‑31 先右旋后左旋 5. 旋转的选择 图 7‑320 码力 | 376 页 | 30.69 MB | 1 年前3
Hello 算法 1.0.0 Java版updateHeight(node); updateHeight(child); // 返回旋转后子树的根节点 return child; } 2. 左旋 相应地,如果考虑上述失衡二叉树的“镜像”,则需要执行图 7‑28 所示的“左旋”操作。 第 7 章 树 hello‑algo.com 163 图 7‑28 左旋操作 同理,如图 7‑29 所示,当节点 child 有左子节点(记为 grand_child )时,需要在左旋中添加一步:将 grand_child 作为 node 的右子节点。 图 7‑29 有 grand_child 的左旋操作 可以观察到,右旋和左旋操作在逻辑上是镜像对称的,它们分别解决的两种失衡情况也是对称的。基于对称 性,我们只需将右旋的实现代码中的所有的 left 替换为 right ,将所有的 right 替换为 left ,即可得到左 旋的实现代码: ,仅使用左旋或右旋都无法使子树恢复平衡。此时需要先对 child 执行“左旋”, 再对 node 执行“右旋”。 图 7‑30 先左旋后右旋 4. 先右旋后左旋 如图 7‑31 所示,对于上述失衡二叉树的镜像情况,需要先对 child 执行“右旋”,再对 node 执行“左旋”。 图 7‑31 先右旋后左旋 第 7 章 树 hello‑algo.com 165 5. 旋转的选择 图 7‑32 展0 码力 | 376 页 | 17.59 MB | 1 年前3
Hello 算法 1.2.0 简体中文 Java 版updateHeight(node); updateHeight(child); // 返回旋转后子树的根节点 return child; } 2. 左旋 相应地,如果考虑上述失衡二叉树的“镜像”,则需要执行图 7‑28 所示的“左旋”操作。 第 7 章 树 www.hello‑algo.com 163 图 7‑28 左旋操作 同理,如图 7‑29 所示,当节点 child 有左子节点(记为 grand_child )时,需要在左旋中添加一步:将 grand_child 作为 node 的右子节点。 图 7‑29 有 grand_child 的左旋操作 可以观察到,右旋和左旋操作在逻辑上是镜像对称的,它们分别解决的两种失衡情况也是对称的。基于对称 性,我们只需将右旋的实现代码中的所有的 left 替换为 right ,将所有的 right 替换为 left ,即可得到左 旋的实现代码: ,仅使用左旋或右旋都无法使子树恢复平衡。此时需要先对 child 执行“左旋”, 再对 node 执行“右旋”。 图 7‑30 先左旋后右旋 4. 先右旋后左旋 如图 7‑31 所示,对于上述失衡二叉树的镜像情况,需要先对 child 执行“右旋”,再对 node 执行“左旋”。 图 7‑31 先右旋后左旋 第 7 章 树 www.hello‑algo.com 165 5. 旋转的选择 图 7‑320 码力 | 379 页 | 18.48 MB | 10 月前3
Spring Boot 3.2.9-snapshot Reference Documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 7.10. Docker Compose Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 7.10.7. Controlling the Docker Compose Lifecycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 7.10.8. Activating Docker Compose Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 7.10.9. Using Docker Compose in Tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0 码力 | 976 页 | 17.49 MB | 1 年前3
共 223 条
- 1
- 2
- 3
- 4
- 5
- 6
- 23













