Nacos架构&原理
ZAB 协议,由于是单点写,在集群扩展性上不具备优势。Eureka 在协议上来说理论上 可以扩展到很大规模,因为都是点对点的数据同步,但是从我们对 Eureka 的运维经验来看, Eureka 集群在扩容之后,性能上有很大问题。 集群扩展性的另⼀个方面是多地域部署和容灾的支持。当讲究集群的高可用和稳定性以及网络上的 跨地域延迟要求能够在每个地域都部署集群的时候,我们现有的方案有多机房容灾、异地多活、多 资源,运维人员只需声明业 务应用所期望的资源状态即可,由 Kubernetes 调度器自动分配节点。这种自动化运维方式不仅可 以减轻运维部署的负担,而且增加了业务运行时的弹性。 Kubernetes 在应用打包、部署、调度和弹性领域是绝对的王者,吸引了无数互联网公司开启了应用 容器化改造之旅。在这迁移过程中,人们渐渐发现虽然服务运行时的底层依赖可以切换到 Kuberne tes 平台,但整个 211 > Nacos 最佳实践 Sync 服务器两次扩容 方案实现后,上了 FAT 环境上后没发现问题(此环境,很多业务服务只部署⼀个实例),而在 PROD 环境上发现存在双向同步丢心跳的问题,原因是同步服务器来不及执行排队的心跳线程,导 致 Nacos 服务器无法及时收到心跳而把业务服务踢下来。我们从 8 台 4C 8G 同步服务器扩容到 12 台,情况好了很多,但观察下来,还是存在⼀天0 码力 | 326 页 | 12.83 MB | 10 月前3
《Java 应用与开发》课程讲义 - 王晓东避免用户直接使用 new 创建对象。 工厂方法模式、抽象工厂方法模式、生成器模式、原型模式和单例模式 行为型模式 涉及怎样合理的设计对象之间的交互通信,以及合理为对象分配职责,让 设计富有弹性、易维护、易复用。 责任链模式、命令模式、解释器模式、迭代器模式、中介者模式、备忘录模式、观 察者模式、状态模式、策略模式、模板方法模式和访问者模式 结构型模式 涉及如何组合类和对象以形成更大的结构,和类有关的结构型模式涉及如 的空列表。 • public ArrayList(int initialCapacity) • public void ensureCapacity(int minCapacity) 对容器进行扩容。 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ensureCapacity(int n) 方法可以对代码性能进行优化: • 该方法可以对 ArrayList 底层的数组进行扩容。 • 显示的调用这个函数,如果参数大于低层数组长度的 1.5 倍,那么这个数组的容 量就会被扩容到这个参数值,如果参数小于低层数组长度的 1.5 倍,那么这个容 量就会被扩容到低层数组长度的 1.5 倍。 • 在适当的时机,好好利用这个函数,将会使我们写出来的程序性能得到很大的提0 码力 | 330 页 | 6.54 MB | 1 年前3
Hello 算法 1.1.0 Java版Q:在构建栈(队列)的时候,未指定它的大小,为什么它们是“静态数据结构”呢? 在高级编程语言中,我们无须人工指定栈(队列)的初始容量,这个工作由类内部自动完成。例如,Java 的 ArrayList 的初始容量通常为 10。另外,扩容操作也是自动实现的。详见后续的“列表”章节。 Q:原码转补码的方法是“先取反后加 1”,那么补码转原码应该是逆运算“先减 1 后取反”,而补码转原码也 一样可以通过“先取反后加 1”得到,这是为什么呢? if (nums[i] == target) return i; } return -1; } 7. 扩容数组 在复杂的系统环境中,程序难以保证数组之后的内存空间是可用的,从而无法安全地扩展数组容量。因此在 大多数编程语言中,数组的长度是不可变的。 如果我们希望扩容数组,则需重新建立一个更大的数组,然后把原数组元素依次复制到新数组。这是一个 ?(?) 的操作,在数组很大的情况下非常耗时。代码如下所示: 存来提升后续操作的执行速度。 连续空间存储是一把双刃剑,其存在以下局限性。 ‧ 插入与删除效率低:当数组中元素较多时,插入与删除操作需要移动大量的元素。 ‧ 长度不可变:数组在初始化后长度就固定了,扩容数组需要将所有数据复制到新数组,开销很大。 ‧ 空间浪费:如果数组分配的大小超过实际所需,那么多余的空间就被浪费了。 4.1.3 数组典型应用 数组是一种基础且常见的数据结构,既频繁应用在各类0 码力 | 378 页 | 18.47 MB | 1 年前3
Hello 算法 1.0.0 Java版Q:在构建栈(队列)的时候,未指定它的大小,为什么它们是“静态数据结构”呢? 在高级编程语言中,我们无须人工指定栈(队列)的初始容量,这个工作由类内部自动完成。例如,Java 的 ArrayList 的初始容量通常为 10。另外,扩容操作也是自动实现的。详见后续的“列表”章节。 66 第 4 章 数组与链表 � 数据结构的世界如同一堵厚实的砖墙。 数组的砖块整齐排列,逐个紧贴。链表的砖块分散各处,连接的藤蔓自由地穿梭于砖缝之间。 if (nums[i] == target) return i; } return -1; } 7. 扩容数组 在复杂的系统环境中,程序难以保证数组之后的内存空间是可用的,从而无法安全地扩展数组容量。因此在 大多数编程语言中,数组的长度是不可变的。 如果我们希望扩容数组,则需重新建立一个更大的数组,然后把原数组元素依次复制到新数组。这是一个 ?(?) 的操作,在数组很大的情况下非常耗时。代码如下所示: 存来提升后续操作的执行速度。 连续空间存储是一把双刃剑,其存在以下局限性。 ‧ 插入与删除效率低:当数组中元素较多时,插入与删除操作需要移动大量的元素。 ‧ 长度不可变:数组在初始化后长度就固定了,扩容数组需要将所有数据复制到新数组,开销很大。 ‧ 空间浪费:如果数组分配的大小超过实际所需,那么多余的空间就被浪费了。 4.1.3 数组典型应用 数组是一种基础且常见的数据结构,既频繁应用在各类0 码力 | 376 页 | 17.59 MB | 1 年前3
Hello 算法 1.0.0b4 Java版randomNum; } 4. 数组与链表 hello‑algo.com 52 4.1.2. 数组缺点 数组在初始化后长度不可变。由于系统无法保证数组之后的内存空间是可用的,因此数组长度无法扩展。而 若希望扩容数组,则需新建一个数组,然后把原数组元素依次拷贝到新数组,在数组很大的情况下,这是非 常耗时的。 // === File: array.java === /* 扩展数组长度 */ int[] 数据,这使数组长度的选 择变得困难。若长度过小,需要在持续添加数据时频繁扩容数组;若长度过大,则会造成内存空间的浪费。 为解决此问题,出现了一种被称为「动态数组 Dynamic Array」的数据结构,即长度可变的数组,也常被称 为「列表 List」。列表基于数组实现,继承了数组的优点,并且可以在程序运行过程中动态扩容。在列表中, 我们可以自由添加元素,而无需担心超过容量限制。 4.3.1 变量,我们可以定位列表尾部,以及判断是否需要扩容。 ‧ 扩容机制:插入元素时可能超出列表容量,此时需要扩容列表。扩容方法是根据扩容倍数创建一个更大 的数组,并将当前数组的所有元素依次移动至新数组。在本示例中,我们规定每次将数组扩容至之前的 2 倍。 本示例旨在帮助读者直观理解列表的工作机制。实际编程语言中,列表实现更加标准和复杂,各个参数的设 定也非常有考究,例如初始容量、扩容倍数等。感兴趣的读者可以查阅源码进行学习。0 码力 | 342 页 | 27.39 MB | 1 年前3
Hello 算法 1.0.0b5 Java版if (nums[i] == target) return i; } return -1; } 7. 扩容数组 在复杂的系统环境中,程序难以保证数组之后的内存空间是可用的,从而无法安全地扩展数组容量。因此在 大多数编程语言中,数组的长度是不可变的。 如果我们希望扩容数组,则需重新建立一个更大的数组,然后把原数组元素依次拷贝到新数组。这是一个 ?(?) 的操作,在数组很大的情况下是非常耗时的。 存来提升后续操作的执行速度。 连续空间存储是一把双刃剑,其存在以下缺点。 ‧ 插入与删除效率低: 当数组中元素较多时,插入与删除操作需要移动大量的元素。 ‧ 长度不可变: 数组在初始化后长度就固定了,扩容数组需要将所有数据复制到新数组,开销很大。 ‧ 空间浪费: 如果数组分配的大小超过了实际所需,那么多余的空间就被浪费了。 4.1.3 数组典型应用 数组是一种基础且常见的数据结构,既频繁应用在 数据,这使数组长度的选 择变得困难。若长度过小,需要在持续添加数据时频繁扩容数组;若长度过大,则会造成内存空间的浪费。 为解决此问题,出现了一种被称为「动态数组 dynamic array」的数据结构,即长度可变的数组,也常被称 为「列表 list」。列表基于数组实现,继承了数组的优点,并且可以在程序运行过程中动态扩容。我们可以在 列表中自由地添加元素,而无须担心超过容量限制。 4.3.10 码力 | 376 页 | 30.69 MB | 1 年前3
Hello 算法 1.2.0 简体中文 Java 版Q:在构建栈(队列)的时候,未指定它的大小,为什么它们是“静态数据结构”呢? 在高级编程语言中,我们无须人工指定栈(队列)的初始容量,这个工作由类内部自动完成。例如,Java 的 ArrayList 的初始容量通常为 10。另外,扩容操作也是自动实现的。详见后续的“列表”章节。 Q:原码转补码的方法是“先取反后加 1”,那么补码转原码应该是逆运算“先减 1 后取反”,而补码转原码也 一样可以通过“先取反后加 1”得到,这是为什么呢? if (nums[i] == target) return i; } return -1; } 7. 扩容数组 在复杂的系统环境中,程序难以保证数组之后的内存空间是可用的,从而无法安全地扩展数组容量。因此在 大多数编程语言中,数组的长度是不可变的。 如果我们希望扩容数组,则需重新建立一个更大的数组,然后把原数组元素依次复制到新数组。这是一个 ?(?) 的操作,在数组很大的情况下非常耗时。代码如下所示: 存来提升后续操作的执行速度。 连续空间存储是一把双刃剑,其存在以下局限性。 ‧ 插入与删除效率低:当数组中元素较多时,插入与删除操作需要移动大量的元素。 ‧ 长度不可变:数组在初始化后长度就固定了,扩容数组需要将所有数据复制到新数组,开销很大。 ‧ 空间浪费:如果数组分配的大小超过实际所需,那么多余的空间就被浪费了。 4.1.3 数组典型应用 数组是一种基础且常见的数据结构,既频繁应用在各类0 码力 | 379 页 | 18.48 MB | 10 月前3
Hello 算法 1.0.0b1 Java版nums[randomIndex]; return randomNum; } 4.1.2. 数组缺点 数组在初始化后长度不可变。由于系统无法保证数组之后的内存空间是可用的,因此数组长度无法扩展。而若 希望扩容数组,则需新建一个数组,然后把原数组元素依次拷贝到新数组,在数组很大的情况下,这是非常耗 4. 数组与链表 hello‑algo.com 47 时的。 // === File: array.java 度的选择带来了很大困难。长度选小了,需要在添加数据中频繁地扩容数组;长度选大了,又造成内存空间的 浪费。 为了解决此问题,诞生了一种被称为「列表 List」的数据结构。列表可以被理解为长度可变的数组,因此也常 被称为「动态数组 Dynamic Array」。列表基于数组实现,继承了数组的优点,同时还可以在程序运行中实时 扩容。在列表中,我们可以自由地添加元素,而不用担心超过容量限制。 ,用来记录列表当前有多少个元素,并随着元素插入与删除实时更 新。根据此变量,可以定位列表的尾部,以及判断是否需要扩容。 ‧ 扩容机制:插入元素有可能导致超出列表容量,此时需要扩容列表,方法是建立一个更大的数组来替换 当前数组。需要给定一个扩容倍数 extendRatio ,在本示例中,我们规定每次将数组扩容至之前的 2 倍。 本示例是为了帮助读者对如何实现列表产生直观的认识。实际编程语言中,列表的实现远比以下代码复杂且标0 码力 | 186 页 | 14.71 MB | 1 年前3
Hello 算法 1.0.0b2 Java版nums[randomIndex]; return randomNum; } 4.1.2. 数组缺点 数组在初始化后长度不可变。由于系统无法保证数组之后的内存空间是可用的,因此数组长度无法扩展。而若 希望扩容数组,则需新建一个数组,然后把原数组元素依次拷贝到新数组,在数组很大的情况下,这是非常耗 4. 数组与链表 hello‑algo.com 47 时的。 // === File: array.java 度的选择带来了很大困难。长度选小了,需要在添加数据中频繁地扩容数组;长度选大了,又造成内存空间的 浪费。 为了解决此问题,诞生了一种被称为「列表 List」的数据结构。列表可以被理解为长度可变的数组,因此也常 被称为「动态数组 Dynamic Array」。列表基于数组实现,继承了数组的优点,同时还可以在程序运行中实时 扩容。在列表中,我们可以自由地添加元素,而不用担心超过容量限制。 ,用来记录列表当前有多少个元素,并随着元素插入与删除实时更 新。根据此变量,可以定位列表的尾部,以及判断是否需要扩容。 ‧ 扩容机制:插入元素有可能导致超出列表容量,此时需要扩容列表,方法是建立一个更大的数组来替换 当前数组。需要给定一个扩容倍数 extendRatio ,在本示例中,我们规定每次将数组扩容至之前的 2 倍。 本示例是为了帮助读者对如何实现列表产生直观的认识。实际编程语言中,列表的实现远比以下代码复杂且标0 码力 | 197 页 | 15.72 MB | 1 年前3
JAVA 应用与开发 - 集合与映射ensureCapacity(int minCapacity) 对容器进行扩容。 public void trimToSize() 将此 ArrayList 实例的容量调整为列表的当前大小。 9 28 ��������� ensureCapacity O ArrayList ensureCapacity(int n) 该方法可以对 ArrayList 底层的数组进行扩容。 显式地调用这个函数,如果参数大于底层数组长度的 长度的 1.5 倍, 那么这个数组的容量就会被扩容到这个参数值,如果参数小于 底层数组长度的 1.5 倍,那么这个容量就会被扩容到底层数组 长度的 1.5 倍。 在适当的时机,好好利用这个函数,将会使我们写出来的程序 性能得到很大的提升。 课程配套代码 ± sample.setlistmap.ArrayListEnSureCapacitySample.java 10 28 Vector �0 码力 | 66 页 | 713.79 KB | 1 年前3
共 11 条
- 1
- 2













