积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(123)Blender(39)KiCad(20)Weblate(18)产品与服务(13)人工智能(9)Krita(9)版本控制(5)GIMP(5)Apache OFBiz(5)

语言

全部英语(80)中文(简体)(26)中文(繁体)(10)日语(3)zh(2)韩语(1)ro(1)

格式

全部PDF文档 PDF(93)其他文档 其他(30)
 
本次搜索耗时 0.111 秒,为您找到相关结果约 123 个.
  • 全部
  • 综合其他
  • Blender
  • KiCad
  • Weblate
  • 产品与服务
  • 人工智能
  • Krita
  • 版本控制
  • GIMP
  • Apache OFBiz
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 日语
  • zh
  • 韩语
  • ro
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Trends Artificial Intelligence

    the competitive pressure amongst LLM providers increases – not on accuracy alone, but also on latency, uptime, and cost-per-token*. What used to cost dollars can now cost pennies. And what cost pennies builds high-speed interconnects that move data between GPUs and memory systems with minimal latency – an increasingly important performance constraint. These firms aren’t building foundation models the competitive pressure amongst LLM providers increases – not on accuracy alone, but also on latency, uptime, and cost-per-token*. What used to cost dollars can now cost pennies. And what cost pennies
    0 码力 | 340 页 | 12.14 MB | 5 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    your models Different models have different strengths and tradeoffs related to task complexity, latency, and cost. As we’ll see in the next section on Orchestration, you might want to consider using a 02 Focus on meeting your accuracy target with the best models available 03 Optimize for cost and latency by replacing larger models with smaller ones 
 where possible You can find a comprehensive guide interactions. Tool safeguards Assess the risk of each tool available to your agent by assigning a rating—low, medium, or high—based on factors like read-only vs. write access, reversibility, required account
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • mobi文档 Pro Git 2nd Edition 2.1.413

    tools like libgit2 and JGit. If you’re interested in writing complex and fast custom tools and need low-level Git access, this is where you can see what that landscape looks like. Finally, in Appendix another computer on your network. If you’re used to a CVCS where most operations have that network latency overhead, this aspect of Git will make you think that the gods of speed have blessed Git with unworldly common Git workflows, and explains how/when to use them. There’s also a section comparing high and low integration frequencies. https://martinfowler.com/articles/branching-patterns.html Workflows Summary
    0 码力 | 731 页 | 21.49 MB | 1 年前
    3
  • pdf文档 Pro Git 2nd Edition 2.1.413

    tools like libgit2 and JGit. If you’re interested in writing complex and fast custom tools and need low-level Git access, this is where you can see what that landscape looks like. Finally, in Appendix another computer on your network. If you’re used to a CVCS where most operations have that network latency overhead, this aspect of Git will make you think that the gods of speed have blessed Git with unworldly common Git workflows, and explains how/when to use them. There’s also a section comparing high and low integration frequencies. https://martinfowler.com/articles/branching-patterns.html Workflows Summary
    0 码力 | 501 页 | 17.96 MB | 1 年前
    3
  • epub文档 Pro Git 2nd Edition 2.1.413

    tools like libgit2 and JGit. If you’re interested in writing complex and fast custom tools and need low-level Git access, this is where you can see what that landscape looks like. Finally, in Appendix another computer on your network. If you’re used to a CVCS where most operations have that network latency overhead, this aspect of Git will make you think that the gods of speed have blessed Git with unworldly common Git workflows, and explains how/when to use them. There’s also a section comparing high and low integration frequencies. https://martinfowler.com/articles/branching-patterns.html Workflows Summary
    0 码力 | 691 页 | 13.35 MB | 1 年前
    3
  • epub文档 Krita 5.2 Manual

    dabs: The closer they are together, the harder the line is. By default, this is 0.1, which is a bit low. If you set it to 10 and test, you’ll see what kind of effect spacing has. The Auto checkbox changes image for computer consumption, this is the default. 120 PPI This is often used as a standard for low-quality posters. 300 PPI This is the minimum you should use for quality prints. 600 PPI The quality slowly start building up your animation. During the sketching phase it may also help to work on a low resolution, like 800×450 pixels. High resolution only starts mattering when you are doing line art
    0 码力 | 1502 页 | 79.07 MB | 1 年前
    3
  • epub文档 Krita 5.2 브로셔

    dabs: The closer they are together, the harder the line is. By default, this is 0.1, which is a bit low. If you set it to 10 and test, you’ll see what kind of effect spacing has. The Auto checkbox changes image for computer consumption, this is the default. 120 PPI This is often used as a standard for low-quality posters. 300 PPI This is the minimum you should use for quality prints. 600 PPI The quality slowly start building up your animation. During the sketching phase it may also help to work on a low resolution, like 800×450 pixels. High resolution only starts mattering when you are doing line art
    0 码力 | 1531 页 | 79.11 MB | 1 年前
    3
  • pdf文档 XDNN TVM - Nov 2019

    https://github.com/Xilinx/ml-suite/blob/master/examples/caffe/Benchmark_README.md Two measurements we track: Latency & Throughput ˃ ML pipeline contains multiple stages, performance limited by slowest one ˃ Performance
    0 码力 | 16 页 | 3.35 MB | 6 月前
    3
  • pdf文档 PAI & TVM Meetup - Shanghai 20191116

    sizes 。 Vectorized load/store for higher bandwidth utilization 。Double buffer to hide memory load latency 。 storage align to reduce bank conflicts of shared memory 。 Virtual threads for data reuse (on
    0 码力 | 26 页 | 5.82 MB | 6 月前
    3
  • pdf文档 TVM Meetup: Quantization

    Amazon Web Services, Inc. or its Affiliates. All rights reserved. Performance Comparison • Metric – Latency in ms for batch size = 1 • 1.7x speedup on Inception asymmetric quantized model • Mobilenet requires
    0 码力 | 19 页 | 489.50 KB | 6 月前
    3
共 123 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 13
前往
页
相关搜索词
TrendsArtificialIntelligenceOpenAIpracticalguidetobuildingagentsProGit2ndEdition2.1413Krita5.2ManualXDNNTVMNov2019PAIMeetupShanghai20191116Quantization
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩